Project description:Gut microbiomes perform crucial roles in host health and development, but few studies have explored cetacean microbiomes especially deep divers. We characterized the gut microbiomes of stranded dwarf (Kogia sima) and pygmy (K. breviceps) sperm whales to examine the effects of phylogeny and life stage on microbiome composition and diversity. 16S rRNA gene sequence analysis revealed diverse gut communities (averaging 674 OTUs) dominated by a few symbiont taxa (25 OTUs accounted for 64% of total relative abundance). Both phylogeny and life stage shaped community composition and diversity, with species-specific microbiome differences present early in life. Further analysis showed evidence of microbiome convergence with host maturity, albeit through different processes: symbiont 'accumulation' in K. sima and 'winnowing' in K. breviceps, indicating different methods of community assembly during host development. Furthermore, culture-based analyses yielded 116 pure cultures matching 25 OTUs, including one isolate positive for chitin utilization. Our findings indicate that kogiid gut microbiomes are highly diverse and species-specific, undergo significant shifts with host development, and can be cultivated on specialized media under anaerobic conditions. These results enhance our understanding of the kogiid gut microbiome and may provide useful information for symbiont assessment in host health.
Project description:The genus Kogia, which comprises only two extant species, Kogia sima and Kogia breviceps, represents one of the least known groups of cetaceans in the global ocean. In some coastal regions, however, stranding events of these species have been relatively common over the last decades. Stranding provides the opportunity to investigate the biology of these cetaceans and to explore the epidemiological aspects associated with the mortality of the organisms found on the beach. A number of disturbances (including pelagic fisheries, chemical pollution, boat strikes, and noise pollution) have been confirmed to pose a particular threat to the Kogia species. However, no study has yet investigated potential relationships between environmental conditions and stranding events. Here we analyse how a collection of environmental, physical, and biological variables, such as wind, sea surface temperature (SST), water depth, and chlorophyll-a, correlate to Kogia stranding events along the Brazilian coast. The results of our statistical analyses suggest that K. sima is more likely found in warm tropical waters, which provide an explanation for the high frequency of stranding in northeastern Brazilian coast. In contrast, K. breviceps appears to have a preference for temperate and productive waters. Wind speed results to be also an important factor for predicting Kogia strandings in Brazilian coast. Additionally, literature information in combination with our own data and analyses of stomach contents confirms that oceanic cephalopods constitute the primary nutritional source of both Kogia species. By using the available information as a qualitative proxy for habitat preference and feeding ecology, our study provides a novel and comprehensive assessment of Kogia stranding data in relation to environmental conditions along the Brazilian coast.
| S-EPMC4701718 | biostudies-literature
Project description:Kogia Gut Microbiome Project
| PRJNA368963 | ENA
Project description:Oral microbiomes from Kogia breviceps