Project description:Influenza virus transmission between mothers and nursing-infants has not been investigated although mothers and infants often develop severe disease. Ferrets are considered the most appropriate model for influenza studies. We investigated influenza transmission in infant and nursing-mother ferrets. Influenza infected infants transmitted virus to mother mammary glands leading to live virus excretion in milk and influenza virus positive mammary gland epithelial cells. Global gene expression analysis showed down-regulation of milk production and induction of breast involution and oncogenesis pathways. Our results provide insight into influenza transmission between mothers and infants which may impact fields of infectious disease, maternal/infant health and neoplasm etiology. Total RNA was obtained from nursing mother ferret mammary glands at days 3/4 and 6/7 post-intranasal kit infection with 10^5 EID50 A/California/07/2009 (H1N1). Total RNA was also collected from uninfected control nursing mother mammary gland tissues (n = 3). Changes in gene expression relative to uninfected tissue controls were then investigated.
Project description:Influenza virus transmission between mothers and nursing-infants has not been investigated although mothers and infants often develop severe disease. Ferrets are considered the most appropriate model for influenza studies. We investigated influenza transmission in infant and nursing-mother ferrets. Influenza infected infants transmitted virus to mother mammary glands leading to live virus excretion in milk and influenza virus positive mammary gland epithelial cells. Global gene expression analysis showed down-regulation of milk production and induction of breast involution and oncogenesis pathways. Our results provide insight into influenza transmission between mothers and infants which may impact fields of infectious disease, maternal/infant health and neoplasm etiology.
Project description:Influenza virus transmission between mothers and nursing-infants has not been investigated although mothers and infants often develop severe disease. Ferrets are considered the most appropriate model for influenza studies. We investigated influenza transmission in infant and nursing-mother ferrets. Influenza infected infants transmitted virus to mother mammary glands leading to live virus excretion in milk and influenza virus positive mammary gland epithelial cells. Global gene expression analysis showed down-regulation of milk production and induction of breast involution and oncogenesis pathways. Our results provide insight into influenza transmission between mothers and infants which may impact fields of infectious disease, maternal/infant health and neoplasm etiology.
Project description:Influenza virus transmission between mothers and nursing-infants has not been investigated although mothers and infants often develop severe disease. Ferrets are considered the most appropriate model for influenza studies. We investigated influenza transmission in infant and nursing-mother ferrets. Influenza infected infants transmitted virus to mother mammary glands leading to live virus excretion in milk and influenza virus positive mammary gland epithelial cells. Global gene expression analysis showed down-regulation of milk production and induction of breast involution and oncogenesis pathways. Our results provide insight into influenza transmission between mothers and infants which may impact fields of infectious disease, maternal/infant health and neoplasm etiology. Total RNA was obtained from ferret lungs at days 3 and 6 post-intranasal infection with 10^5 EID50 A/California/07/2009 (H1N1) (n = 3/time-point). Total RNA was also collected from uninfected control lung tissues (n = 3). Changes in gene expression relative to uninfected tissue controls were then investigated.
Project description:Breastfeeding protects against mucosal infections in infants. The underlying mechanisms through which immunity develops in human milk following maternal infection with mucosal pathogens are not well understood. We simulate mucosal influenza infection through live attenuated influenza vaccination (LAIV) and compared milk and blood immune responses to inactivated influenza vaccination (IIV). Transcriptomic analysis was performed on RNA extracted from human milk and whole blood. Differentially expressed genes (DEGs) and gene set enrichment analysis (GSEA) on days 1 and 7 post-vaccination were compared to pre-vaccination.
Project description:We modeled two types of breastfeeding behaviors in wild type FVB/N mice: (1) normal or gradual involution of breast tissue following prolonged breastfeeding and (2) forced or abrupt involution following short-term breastfeeding. To accomplish this, pups were gradually weaned between 28 and 31 days (gradual involution) or abruptly at 7 days postpartum (abrupt involution). FACS was used to relatively quantify mammary epithelial subpopulations. Gene set enrichment analysis was used to analyze gene expression data from mouse mammary luminal progenitor cells. Briefly, single cell suspension of the mammary glands was enriched for lineage-negative (Lin−) epithelial cells excluding the Lin+ cells, specifically hematopoietic (biotinylated CD45 and TER119), endothelial (biotinylated CD31), and immune (biotinylated BP-1) cells. The negatively selected cell population was enriched for luminal epithelium (LE) and mammary stem cell (MaSC)-enriched/basal epithelium (MaSC-enriched). For FACS analysis, Lin− populations were labeled with CD24-PE, CD29-FITC, and CD61-APC while their respective isotypes were used as negative controls. Cell suspensions were incubated with the appropriate antibodies for 30 min on ice. Cells were resuspended in FACS buffer (1 mM EDTA, 1% HI-FBS, and 25 mM HEPES, pH 7.0 in 1× phosphate-buffered saline) and sorted on a FACS BD LSR II Flow Cytometer.
Project description:The 2024 outbreak of highly pathogenic avian influenza virus (HPAIV) H5N1 in U.S. dairy cattle presented an unprecedented scenario where the virus infected bovine mammary glands and was detected in milk, raising serious concerns for public health and the dairy industry. Unlike previously described subclinical influenza A virus (IAV) infections in cattle, H5N1 infection induced severe clinical symptoms, including respiratory distress, mastitis, and abnormal milk production. To understand the host immune responses and changes particularly in the mammary gland, we performed scRNA-seq analysis on bovine milk somatic cells (bMSC) in-vitro infected with H5N1 isolate from dairy farm. We identified ten distinct cell clusters and observed a shift toward type-2 immune responses, characterized by T-cells expressing IL13 and GATA3, and three different subtypes of epithelial cells based on expression of genes associated with milk production. Our study revealed temporal dynamics in cytokine expression, with a rapid decline in luminal epithelial cells and an increase in macrophages and dendritic cells, suggesting a role in increased antigen presentation. These findings indicate that bovine H5N1 infection triggers complex immune responses involving both pro-inflammatory and regulatory pathways. This research fills a critical gap in understanding the immune responses of bovine mammary glands to H5N1 infection and highlights the need for further investigation into therapeutic strategies for managing such outbreaks.