Project description:It is proposed that the impaired sympathoadrenal response to hypoglycemia induced by recurrent insulin-induced hypoglycemia (RH) is an adaptive phenomenon induced by specific changes in microRNA expression in the ventromedial hypothalamus (VMH). To test this hypothesis, genome-wide microRNAomic profiling of the VMH by RNA-sequencing was performed in control and RH treated rats. Differential expression analysis identified microRNA-7a-5p and microRNA-665 as potential mediators of this phenomenon. To further test this hypothesis, experiments were conducted consisting of targeted lentiviral-mediated overexpression of microRNA-7a-5p and downregulation of microRNA-665 in the VMH. Hyperinsulinemic hypoglycemic clamp experiments demonstrated that targeted overexpression of microRNA-7a-5p (but not downregulation of microRNA-665) in the VMH of RH rats restored the epinephrine response to hypoglycemia. This restored response to hypoglycemia was associated with a restoration of GABAA receptor gene expression. Finally, a direct interaction of microRNA-7a-5p with 3’-UTR of GABAA receptor α1-subunit (Gabra1) gene was demonstrated in a luciferase assay. These findings indicate that 1) the impaired sympathoadrenal response induced by RH is associated with changes in VMH microRNA expression, and 2) microRNA-7a-5p, possibly via direct downregulation of GABA receptor gene expression, may serve as a mediator of the altered sympathoadrenal response to hypoglycemia.
Project description:The molecular control of feeding after fasting is essential for maintaining energy homeostasis, and overfeeding usually leads to obesity. RNA interference has been clinically successful in managing diseases, and the identification of a feeding-regulated microRNA (miRNA), which remains a challenge, could be a strategy for combating obesity. By performing a comprehensive genome-wide microRNA screening in the arcuate nucleus of the hypothalamus (ARC) of fasted mice and ad libitum mice, we found a significant increase in miR-7a-5p levels after fasting. miR-7a-5p was highly expressed in the ARC, and inhibition of miR-7a-5p specifically in AgRP neurons reduced food intake and body weight gain. miR-7a-5p inhibited S6K1 gene expression by binding to its 3’-UTR. Furthermore, the reduction of food intake by anti-miR-7a-5p was partially reversed by the downregulated mechanistic target of rapamycin complex 1 (mTOR1)/ribosomal S6 kinase 1 (S6K1) signaling in the AgRP neurons. Importantly, intracerebroventricular administration of the miR-7a-5p inhibitor could reduce food intake and body weight. Collectively, our findings suggest miR-7a-5p as an orexigenic factor in AgRP neurons and a potential novel target for obesity treatment.
Project description:Small RNA sequencing of all the let-7a single-nucleotide mutants to confirm the expression of the mutant miRNAs.We found that the abundance of the mutated let-7a miRNA in each mutant was similar to that of the native let-7a in WT, with a variance (<10%) that we judge not sufficient to cause lf phenotypes by reduced expression (Fig. 3B). Note that the strains with mutations at g11-g16 also contained a WT let-7 allele on a genetic balancer umnIs25(mnDp1), hence both WT and mutant let-7a were expressed.