Project description:miRNA expression analysis was performed on 14 cases of high grade gliomas and 4 controls obtained from age-matched epileptic patients. After this differentially miRNA analysis has been done among T53,H3F3A,normal and pediatric high grade glioma patient and try to identify the highly altered miRNA expression as well as sno expression pattern.
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes
Project description:Background<br>Primitive brain tumors are the first cause of cancer-related death in children. Tumor cells with stem-like properties (TSCs), thought to account for tumorigenesis and therapeutic resistance, have been isolated from high-grade gliomas in adults. Whether TSCs are a common component of pediatric brain tumors and are of clinical relevance remains to be determined. <br>Methodology/Principal findings<br>Tumor cells with self-renewal properties were isolated with cell biology techniques from a majority of 55 pediatric brain tumors samples, regardless of their histopathologies and grades of malignancy (57% of embryonal tumors, 57% of low-grade gliomas and neuro-glial tumors, 70% of ependymomas, 91% of high-grade gliomas). The vast majority (10/12) of high-grade glioma-derived oncospheres sustained long-term self-renewal numbers akin to neural stem cells (>7 self-renewals), whereas cells with limited renewing abilities akin to neural progenitors dominated in all other tumor types. Regardless of tumor entities, the young age group was associated with self-renewal properties akin to neural stem cells (P=0.05, chi-square test). TSCs shared a complex molecular profile combining embryonic stem cell markers with elements controlling neural stem cell properties and epithelio-mesenchymal transitions. They were radio- and chemoresistant and formed aggressive tumors after intracerebral grafting. Survival analysis of the cohort showed an association between isolation of TSCs with long-term self-renewal abilities and a patients higher mortality rate (P = 0.022, log-rank test). Patients bearing cells with limited self-renewal properties constituted an intermediate group of survival but which did not reach statistical significance. <br>Conclusions/Significance<br>In brain tumors affecting adult patients, TSC have been isolated only from high-grade gliomas. In contrast, our data show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a wide range of histological sub-types and grades of pediatric brain tumors. They suggest that cellular mechanisms fueling tumor development differ between adult and pediatric brain tumors.<br>
Project description:Background<br>Primitive brain tumors are the first cause of cancer-related death in children. Tumor cells with stem-like properties (TSCs), thought to account for tumorigenesis and therapeutic resistance, have been isolated from high-grade gliomas in adults. Whether TSCs are a common component of pediatric brain tumors and are of clinical relevance remains to be determined. <br>Methodology/Principal findings<br>Tumor cells with self-renewal properties were isolated with cell biology techniques from a majority of 55 pediatric brain tumors samples, regardless of their histopathologies and grades of malignancy (57% of embryonal tumors, 57% of low-grade gliomas and neuro-glial tumors, 70% of ependymomas, 91% of high-grade gliomas). The vast majority (10/12) of high-grade glioma-derived oncospheres sustained long-term self-renewal numbers akin to neural stem cells (>7 self-renewals), whereas cells with limited renewing abilities akin to neural progenitors dominated in all other tumor types. Regardless of tumor entities, the young age group was associated with self-renewal properties akin to neural stem cells (P=0.05, chi-square test). TSCs shared a complex molecular profile combining embryonic stem cell markers with elements controlling neural stem cell properties and epithelio-mesenchymal transitions. They were radio- and chemoresistant and formed aggressive tumors after intracerebral grafting. Survival analysis of the cohort showed an association between isolation of TSCs with long-term self-renewal abilities and a patientM-^Rs higher mortality rate (P = 0.022, log-rank test). Patients bearing cells with limited self-renewal properties constituted an intermediate group of survival but which did not reach statistical significance. <br>Conclusions/Significance<br>In brain tumors affecting adult patients, TSC have been isolated only from high-grade gliomas. In contrast, our data show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a wide range of histological sub-types and grades of pediatric brain tumors. They suggest that cellular mechanisms fueling tumor development differ between adult and pediatric brain tumors.<br>