Project description:Homeostasis of self-renewing small intestinal crypts results from neutral competition between Lgr5 stem cells, small cycling cells located at crypt bottoms1, 2. Lgr5 stem cells are interspersed between terminally differentiated Paneth cells, that are known to produce bactericidal products such as lysozyme and cryptdins/defensins3. Single Lgr5-expressing stem cells can be cultured to form long-lived, self-organizing crypt-villus organoids in the absence of non-epithelial niche cells4. Here, we note a close physical association of Lgr5 stem cells with Paneth cells in vivo and in vitro. CD24+ Paneth cells express EGF, TGF?, Wnt3 and the Notch-ligand Dll4, all essential signals for stem cell maintenance in culture. Co-culturing of sorted stem cells with Paneth cells dramatically improves organoid formation. This Paneth cell requirement can be substituted by a pulse of exogenous Wnt. Genetic removal of Paneth cells in vivo results in the concomitant loss of Lgr5 stem cells. In colon crypts, CD24+ cells residing between Lgr5 stem cells may represent the Paneth cell equivalents. We conclude that Lgr5 stem cells compete for essential niche signals provided by a specialized daughter cell, the Paneth cell. We used intestinal cell fractions from Lgr5-EGFP-ires-CreERT2 mice, expressing GFP under the control of the Lgr5 promoter. RNA was isolated from two FACS sorted cell populations: stem cells were sorted based on high level of GFP expression (GFPhi) and Paneth cells were sorted based on high level of CD24 expression (CD24hi) and high side-scatter (SSChi). Differentially labelled cRNA from GFPhi and CD24hi/SSChi cells from two different sorts (each combining ten individual mice) were hybridized on 4X44K Agilent Whole Mouse Genome dual colour Microarrays (G4122F) in two dye swap experiments, resulting in four individual arrays.
Project description:Homeostasis of self-renewing small intestinal crypts results from neutral competition between Lgr5 stem cells, small cycling cells located at crypt bottoms1, 2. Lgr5 stem cells are interspersed between terminally differentiated Paneth cells, that are known to produce bactericidal products such as lysozyme and cryptdins/defensins3. Single Lgr5-expressing stem cells can be cultured to form long-lived, self-organizing crypt-villus organoids in the absence of non-epithelial niche cells4. Here, we note a close physical association of Lgr5 stem cells with Paneth cells in vivo and in vitro. CD24+ Paneth cells express EGF, TGFα, Wnt3 and the Notch-ligand Dll4, all essential signals for stem cell maintenance in culture. Co-culturing of sorted stem cells with Paneth cells dramatically improves organoid formation. This Paneth cell requirement can be substituted by a pulse of exogenous Wnt. Genetic removal of Paneth cells in vivo results in the concomitant loss of Lgr5 stem cells. In colon crypts, CD24+ cells residing between Lgr5 stem cells may represent the Paneth cell equivalents. We conclude that Lgr5 stem cells compete for essential niche signals provided by a specialized daughter cell, the Paneth cell.
Project description:Lgr5-EGFP-IRES-Cre-ERT2 mice were exposed to azoxymethane/dextrane sodium sulfate (AOM/DSS) which induces inflammation-driven colon tumors. Tumors were then flow-sorted into fractions of epithelial cells that expressed high or low levels of Lgr5. To exclude that transcriptional differences between Lgr5 high and low mouse colon tumor cells were imposed by distinct patterns of chromosomal aberrations in the two cell fractions, we also performed array comparative genomic hybridization (aCGH) from these tumors. All eight analyzed tumors were chromosomally stable, and thus, no difference between Lgr5 high and low cells could be detected. AOM/DSS-induced mouse colon tumors were flow-sorted into Lgr5 high and low cells before aCGH was performed. Biological replicates: 8. Two CGH array platforms.
Project description:H3K79me2 ChIP-seq in mouse proximal intestinal Lgr5(hi) stem cells and villus cells Examination of H3K79me2 modifications between Lgr5(hi) stem cells and differentiated villus cells
Project description:Lgr5-EGFP-IRES-Cre-ERT2 mice were exposed to azoxymethane/dextrane sodium sulfate (AOM/DSS) which induces inflammation-driven colon tumors. Tumors were then flow-sorted into fractions of epithelial cells that expressed high or low levels of Lgr5. To exclude that transcriptional differences between Lgr5 high and low mouse colon tumor cells were imposed by distinct patterns of chromosomal aberrations in the two cell fractions, we also performed array comparative genomic hybridization (aCGH) from these tumors. All eight analyzed tumors were chromosomally stable, and thus, no difference between Lgr5 high and low cells could be detected.
Project description:We used microarrays to detail the differentail gene expression between intestinal Lgr5(hi) stem cells and differentiated cells Assay the differential gene expression using total RNA from flow cytometry sorted Lgr5(hi) cells and EDTA isolated enterocytes from Atoh1 conditional knockout
Project description:Using Lgr5_EGFP-ires-CreERT2 allows us to sort colonic stem cells and CD24 positive cell are subpopulation of Goblet cells in colon