Project description:African-American (AA) men experience increased risk of developing prostate cancers as well as increased mortality following treatment as compared to European-American (EA) men. The aim of our study was to identify biological factors with potential to predispose AA men to prostate tumor progression and metastasis. High-throughput microarrays were used to investigate differences in global gene expression comparing the two groups. Experiment Overall Design: To identify cancer-specific gene expression patterns in AA men, we established primary prostate cancer epithelial cells from 14 AA and 13 EA men. Cells were cultured for RNA extraction and hybridization on Affymetrix microarrays.
Project description:The incidence and mortality rates of prostate cancer are significantly higher in African-American men when compared to European-American men. We tested the hypothesis that differences in tumor biology contribute to this survival health disparity. Using microarray technology, we obtained gene expression profiles of primary prostate tumors resected from 33 African-American and 36 European-American patients. These tumors were matched on clinical parameters. We also evaluated 18 non-tumor prostate tissues from 7 African-American and 11 European-American patients. The resulting datasets were analyzed for expression differences on the gene and pathway level comparing African-American with European-American patients. Our analysis revealed a significant number of genes, e.g., 162 transcripts at a false-discovery rate less than 5%, to be differently expressed between African-American and European-American patients. Using a disease association analysis, we identified a common relationship of these transcripts with autoimmunity and inflammation. These findings were corroborated on the pathway level with numerous differently expressed genes clustering in immune response, stress response, cytokine signaling, and chemotaxis pathways. Furthermore, a two-gene tumor signature was identified that accurately differentiated between African-American and European-American patients. This finding was confirmed in a blinded analysis of a second sample set. In conclusion, the gene expression profiles of prostate tumors indicate prominent differences in tumor immunobiology between African-American and European-American men. The profiles portray the existence of a distinct tumor microenvironment in these two patient groups. Experiment Overall Design: A total of 69 fresh-frozen prostate tumors were obtained from the NCI Cooperative Prostate Cancer Tissue Resource (CPCTR) and the Department of Pathology at the University of Maryland (UMD). All tumors were resected adenocarcinomas that had not received any therapy prior to prostatectomy. The macro-dissected CPCTR tumor specimens (n = 59) were reviewed by a CPCTR-associated pathologist, who confirmed the presence of tumor in the specimens. These tissues were collected between 2002 and 2004 at four different sites, with each site providing tissues from both African-American and European-American patients. Information on race/ethnicity (33 African-Americans and 36 European-Americans) was either extracted from medical records (CPCTR) or obtained through an epidemiological questionnaire in which race/ethnicity was self-reported (UMD). Only one patient, a European-American, was also Hispanic. Surrounding non-tumor prostate tissue was collected from 18 of the recruited patients in this study. Of those, 7 were African-American men and 11 were European-American men. We also isolated total RNA from 10 needle biopsy specimens collected from patients at the National Naval Medical Center (one African-American and 9 European-Americans) that did not have prostate cancer. From those, we prepared two RNA pools, each representing 5 patients. Clinicopathological characteristics of the patients, including age at prostatectomy, histology, Gleason score, pathological stage, PSA at diagnosis, tumor size, extraprostatic extension, margin involvement, and seminal vesicle invasion were obtained from CPCTR. For UMD cases, this information was extracted from the medical and pathology records, if available. Written informed consent was obtained from all donors. Tissue collection and study design were approved by the institutional review boards of the participating institutions.
Project description:Vitamin D3 is a steroid hormone that has been shown to prevent tumor growth in prostate cells. Not having enough vitamin D3 in the blood has been linked to advanced prostate cancer and mortality, especially in African American men. We wanted to understand how vitamin D affected pathways that keep prostate cells from becoming cancerous, which could lead to new therapeutic targets and treatments, especially for African American men who tend to be more prone to being vitamin D deficient compared to European men. Here, we studied a non-cancerous African American prostate cell line treated with the active form of vitamin D with a concentration similar to what is found in the body for 24 h. Using RNA whole-transcriptome sequencing, we compared these treated cells with untreated cells to assess genes and pathways significantly changed due to treatment. We found that vitamin D affected the activity of 1600 genes, mainly suppressing pathways linked to prostate cell movement, growth, and viability. Only two genes, ANLN and ECT2, were strongly correlated with prostate cancer prognosis. Downregulation of ANLN and ECT2 was also shown to repress signaling pathways involved in prostate cell movement, growth, malignant transformation, and viability. In further validation utilizing prostate cancer cohorts comprised of African American and European American men, patients tended to have better sur-vival rates when these genes were less active. Our results suggest that vitamin D decreases the activity of these genes and could be important for preventing prostate cancer, especially for African American men. This could lead to the development of new treatments targeting specific genes and pathways involved in prostate cancer growth.