Project description:We profiled androgen receptor (AR) genomic targets using high-throughput sequencing of chromatin-immunoprecipitated (ChIP) DNA from TMPRSS2-ERG fusion gene positive DUCaP prostate cancer cells. ChIp-seq and microarray gene expression profiling datasets were integrated with the NHGRI GWAS PCa risk SNPs catalog to identify disease susceptibility SNPs localized within functional androgen receptor binding sites (ARBSs). Eighty GWAS index or linked SNPs were found to be localized in ARBSs. Among these rs11891426:T>G in the 7th intron of the melanophilin gene was found located within a novel putative auxiliary AR binding motif, which we found enriched in the neighborhood of canonical androgen responsive elements. T→G exchange attenuated the transcriptional activity of the ARBS in an AR reporter gene assay of prostate cancer cell models. It went also in line with decreased melanophilin protein level in primary prostate tumors with G allele.These results unravel a hidden link between androgen receptor and a functional PCa risk SNP, whose allele alteration affects androgen regulation of its host gene melanophilin . Genomic profile of androgen receptor binding sites of androgen or vehicle treated DUCaP cells using ChIP-seq. IgG precipiated DNAs from both treatments served as controls.
Project description:We profiled androgen receptor (AR) genomic targets using high-throughput sequencing of chromatin-immunoprecipitated (ChIP) DNA from TMPRSS2-ERG fusion gene positive DUCaP prostate cancer cells. ChIp-seq and microarray gene expression profiling datasets were integrated with the NHGRI GWAS PCa risk SNPs catalog to identify disease susceptibility SNPs localized within functional androgen receptor binding sites (ARBSs). Eighty GWAS index or linked SNPs were found to be localized in ARBSs. Among these rs11891426:T>G in the 7th intron of the melanophilin gene was found located within a novel putative auxiliary AR binding motif, which we found enriched in the neighborhood of canonical androgen responsive elements. T→G exchange attenuated the transcriptional activity of the ARBS in an AR reporter gene assay of prostate cancer cell models. It went also in line with decreased melanophilin protein level in primary prostate tumors with G allele.These results unravel a hidden link between androgen receptor and a functional PCa risk SNP, whose allele alteration affects androgen regulation of its host gene melanophilin .
Project description:Genome-wide association studies (GWAS) have identified dozens of genomic loci, whose single nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the biological functions of these common genetic variants and the mechanisms to increase disease risk are largely unknown. We integrated chromatin-IP coupled sequencing (ChIP-seq) and microarray expression profiling in the TMPRSS2-ERG gene rearrangement positive DuCaP cell model with the NHGRI GWAS PCa risk SNPs catalog, in an attempt to identify disease susceptibility SNPs localized within functional androgen receptor binding sites (ARBSs). Among the 48 GWAS index SNPs and 2,702 linked SNPs defined by the 1000G project 104 were found to be localized in the AR ChIP-seq peaks. Of these risk SNPs, rs11891426 T/G in the 7th intron of its host gene melanophilin (MLPH) was found located within a putative auxiliary ARE motif, which we found enriched in the neighborhood of canonical ARE motifs. Exchange of T to G attenuated the transcriptional activity of the MLPH-ARBS in a reporter gene assay. The expression of MLPH protein in tissue samples from prostate cancer patients was significantly lower in those with the G compared to the T allele. Moreover, a significant positive correlation of AR and MLPH protein expression levels was also confirmed in tissue samples. These results unravel a hidden link between AR and a functional PCa risk SNP rs11891426, whose allele alteration affects androgen regulation of its host gene MLPH. This study shows the power of integrative studies to pin down functional risk SNPs and justifies further investigations.
Project description:The spliced variant forms of androgen receptor (AR-Vs) have been identified recently in castration-resistant prostate cancer (CRPC) cell lines and clinical samples. Here we identified the cistrome and transcriptome landscape of AR-Vs in CRPC cell lines and determine the clinical significance of AR variants regulated gene.The AR variants binding sites can be identified in 22Rv1 cell line in the absence of androgen. Knocking down full-length AR (AR-FL) doesn't affect AR-Vs binding sites in genome-wide. A set of genes were identified to be regulated uniquely by AR-Vs, but not by AR-FL in androgen-depleted condition. Integrated analysis showed that some genes may be modulated by AR-Vs directly. Unsupervised clustering analysis demonstrated that AR variants gene signature can separate not only the benign and malignant prostate tissue, but also the localized prostate cancer and metastatic CRPC specimens. Some genes modulated uniquely by AR variants were also identified to correlate with the Gleason Pattern of prostate cancer and PSA failure. We conclude that AR spliced variants bind to DNA independent of full-length AR, and can modulate a unique set of genes which is not regulated by full-length AR in the absence of androgen. AR variants gene signature correlate with CRPC and prostate cnacer disease progress. Androgen receptor (AR) binding sites in human prostate cancer 22Rv1 cell lines were studied using ChIP-seq. ChIP enriched and input DNA were sequenced using Illumina HiSeq 2000.
Project description:In castration-resistant prostate cancer (CRPC), clinical response to androgen receptor (AR) antagonists is limited mainly due to AR-variants expression and restored AR signaling. The metabolite spermine is most abundant in prostate and it decreases as prostate cancer progresses, but its functions remain poorly understood. Here, we show spermine inhibits full-length androgen receptor (AR-FL) and androgen receptor splice variant 7 (AR-V7) signaling and suppresses CRPC cell proliferation by directly binding and inhibiting protein arginine methyltransferase PRMT1. Spermine reduces H4R3me2a modification at the AR locus and suppresses AR binding as well as H3K27ac modification levels at AR target genes. Spermine supplementation restrains CRPC growth in vivo. PRMT1 inhibition also suppresses AR-FL and AR-V7 signaling and reduces CRPC growth. Collectively, we demonstrate spermine as an anticancer metabolite by inhibiting PRMT1 to transcriptionally inhibit AR-FL and AR-V7 signaling in CRPC, and we indicate spermine and PRMT1 inhibition as powerful strategies overcoming limitations of current AR-based therapies in CRPC.
Project description:The crucial role of androgen receptor in prostate cancer development is well documented, and its inhibition is a mainstay of prostate cancer treatment. Here we analyze the perturbations to the androgen receptor cistrome caused by a minor groove binding molecule that is designed to target a sequence found in a subset of androgen response elements. We find treatment with this pyrrole-imidazole polyamide exhibits sequence selectively in its repression of androgen receptor binding in vivo. Differentially changed loci are enriched for sequences resembling ARE half-sites that match the Py-Im polyamide binding preferences determined in vitro. Comparatively, permutations of ARE half-site bearing single or double mismatches to the Py-Im polyamide binding sequence are not enriched. This study represents an indirect determination of Py-Im polyamide binding preference in vivo using an unbiased approach.
Project description:Androgen receptor (AR) is required for castration resistant prostate cancer (CRPC) progression, but the function and disease relevance of AR-bound enhancers remain poorly understood. Here, we identify a group of AR-regulated enhancer RNAs (e.g. PSA eRNA) that are upregulated in CRPC cells, patient-derived xenografts (PDX) and patient tissues. PSA eRNA binds to CYCLIN T1, activates P-TEFb and promotes in cis and trans gene transcription by increasing serine-2 phosphorylation of RNA polymerase II (Pol II-Ser2p). To avoid the total Pol II changing by PSA eRNA. We measured the total Pol II using N20 and 8WG16 antibodies with or without PSA eRNA knocking down. To avoid the AR binding changes by PSA eRNA, we also measured the AR binding using AR N20 antibodies with or without PSA eRNA knocking down. Androgen receptor (AR) binding sites in human prostate cancer cell lines, C4-2, were studied using ChIP-seq. Total Pol II Ser-2p and AR binding sites in human prostate cancer cell lines C4-2 with or without PSA eRNA knockdown, were studied using ChIP-seq. ChIP enriched DNA were sequenced using Illumina HiSeq 2500and input DNA were sequenced using Illumina HiSeq 2000.
Project description:Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly correlated variants in biologically relevant chromatin annotations- we identified 727 such potentially functional SNPs. We also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory response element disruption of all correlated SNPs at r^2≥0.5. Greater than 88% of the 727 SNPs fall within putative enhancers, many of which alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer correlated SNPs. To aid in the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a mark of actively engaged enhancer regions, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in linkage disequilibrium (r^2=0.91) with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and their potential target genes represents a preliminary step in connecting risk to disease process. ChIP-seq analysis of H3K27Ac in LNCaP charcoal-stripped serum, H3K27Ac in LNCaP charcoal-stripped serum +DHT, TCF7L2 in LNCaP