Project description:We identify a subset of highly expressed genes related to muscle development, which show static H3K4me2 enrichment over the gene body and H3K4me3 enrichment towards the gene body during myogenic differentiation. This study reveals that MyoD significantly binds to this particular subset of genes and further systematic analysis shows the repressive role of MyoD. Interestingly, MyoD binds and down-regulates Patz1 which is important for maintaining pluripotency. These findings might provide a key regulatory mechanism to promote myogenic differentiation.
Project description:Integrated analysis of genome-wide ChIP-Seq and RNA-Seq data revealed the first dynamic chromatin and transcriptional landscape of Twist2 binding during myogenic differentiation. During differentiation, Twist2 competes with MyoD at shared DNA motifs to direct global gene transcription and repression of the myogenic program. Additionally, TWIST2 shapes the epigenetic landscape to drive chromatin opening at oncogenic loci and chromatin closing at myogenic loci. These epigenetic changes redirect MyoD binding from myogenic genes towards oncogenic, metabolic, and growth genes.
Project description:In skeletal myogenesis, the transcription factor MyoD activates distinct transcriptional programs in progenitors compared to terminally differentiated cells. Using ChIP-seq and gene expression analyses, we show that in primary myoblasts, Snail-HDAC1/2 repressive complex bind and exclude MyoD from its targets. Notably, Snail binds E-box motifs that are G/C-rich in their central dinucleotides, and such sites are almost exclusively associated with genes expressed during differentiation. By contrast, Snail does not bind the A/T-rich E-boxes associated with MyoD targets in myoblasts. Thus, Snai1-HDAC1/2 prevents MyoD occupancy on differentiation-specific regulatory elements and the change from Snail- to MyoD-binding often results in enhancer switching during differentiation. Furthermore, we show that a regulatory network involving Myogenic Regulatory Factors (MRFs), Snail/2, miR-30a and miR-206 acts as a molecular switch that controls entry into myogenic differentiation. Together, these results reveal a regulatory paradigm that directs distinct gene expression programs in progenitors versus terminally differentiated cells. Genome wide binding sites of various transcription factors and chromatin modifiers in muscle cells
Project description:Histone chaperones affect chromatin structure and gene expression through interaction with histones and RNA polymerase II (PolII). Here, we report that the histone chaperone Spt6 counteracts H3K27me3, an epigenetic mark deposited by the Polycomb Repressive Complex 2 (PRC2) and associated with transcriptional repression. We found that Spt6 is required for proper engagement and function of the H3K27 demethylase KDM6A (UTX) on muscle genes and regulates muscle gene expression and cell differentiation. ChIP-Seq experiments revealed an extensive genome-wide overlap of Spt6, PolII and KDM6A at transcribed regions that are devoid of H3K27me3. Mammalian cells and zebrafish embryos with reduced Spt6 display increased H3K27me3 and diminished expression of the master regulator MyoD, resulting in myogenic differentiation defects. As a confirmation for an antagonistic relationship between Spt6 and H3K27me3, inhibition of PRC2 permits MyoD re-expression in myogenic cells with reduced Spt6. Our data indicate that, through cooperation with PolII and KDM6A, Spt6 orchestrates removal of H3K27me3, thus effectively controlling developmental gene expression and cell differentiation. Examination of Spt6 and KDM6A levels in a skeletal muscle cells at various developmental stages
Project description:In skeletal myogenesis, the transcription factor MyoD activates distinct transcriptional programs in progenitors compared to terminally differentiated cells. Using ChIP-seq and gene expression analyses, we show that in primary myoblasts, Snail-HDAC1/2 repressive complex bind and exclude MyoD from its targets. Notably, Snail binds E-box motifs that are G/C-rich in their central dinucleotides, and such sites are almost exclusively associated with genes expressed during differentiation. By contrast, Snail does not bind the A/T-rich E-boxes associated with MyoD targets in myoblasts. Thus, Snai1-HDAC1/2 prevents MyoD occupancy on differentiation-specific regulatory elements and the change from Snail- to MyoD-binding often results in enhancer switching during differentiation. Furthermore, we show that a regulatory network involving Myogenic Regulatory Factors (MRFs), Snail/2, miR-30a and miR-206 acts as a molecular switch that controls entry into myogenic differentiation. Together, these results reveal a regulatory paradigm that directs distinct gene expression programs in progenitors versus terminally differentiated cells. This data set contains 3 replicates of a myotube growth time series (0h, 2d, 5d). The data was RMA normalized per replicate set.
Project description:In skeletal myogenesis, the transcription factor MyoD, activates distinct transcriptional programs in progenitors compared to terminally differentiated cells. Using ChIP-seq and gene expression analyses, we show that in primary myoblasts, Snai1/2-HDAC1/2 repressive complex bind and exclude MyoD from its targets. Notably, Snail binds E-box motifs that are G/C-rich in their central dinucleotides, and such sites are almost exclusively associated with genes expressed during differentiation. By contrast, Snai1/2 does not bind the A/T-rich E-boxes associated with MyoD targets in myoblasts. Thus, Snai1/2-HDAC1/2 prevents MyoD occupancy on differentiation-specific regulatory elements and the change from Snail1/2- to MyoD-binding often results in enhancer switching during differentiation. Furthermore, we show that a regulatory network involving Myogenic Regulatory Factors (MRFs), Snail/2, miR-30a and miR-206 acts as a molecular switch that controls entry into myogenic differentiation. Together, these results reveal a regulatory paradigm that directs distinct gene expression programs in progenitors versus terminally differentiated cells. In vivo depletion of transcription factor with siRNA followed by whole transcriptome analysis (RNA-seq) to identify target genes.
Project description:In skeletal myogenesis, the transcription factor MyoD activates distinct transcriptional programs in progenitors compared to terminally differentiated cells. Using ChIP-seq and gene expression analyses, we show that in primary myoblasts, Snail-HDAC1/2 repressive complex bind and exclude MyoD from its targets. Notably, Snail binds E-box motifs that are G/C-rich in their central dinucleotides, and such sites are almost exclusively associated with genes expressed during differentiation. By contrast, Snail does not bind the A/T-rich E-boxes associated with MyoD targets in myoblasts. Thus, Snai1-HDAC1/2 prevents MyoD occupancy on differentiation-specific regulatory elements and the change from Snail- to MyoD-binding often results in enhancer switching during differentiation. Furthermore, we show that a regulatory network involving Myogenic Regulatory Factors (MRFs), Snail/2, miR-30a and miR-206 acts as a molecular switch that controls entry into myogenic differentiation. Together, these results reveal a regulatory paradigm that directs distinct gene expression programs in progenitors versus terminally differentiated cells.