Project description:Mesenchymal stem/stromal cells (MSCs) were harvested from subcutaneous adipose tissue of patients with obesity or healthy controls and expanded for 3-4 passages, and 5hmC profiles were examined through hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq). We hypothesized that obesity and cardiovascular risk factors induce functionally-relevant, locus-specific changes in overall exonic coverage of 5hmC in human adipose-derived MSCs.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Early Chronological Aging in Human Adipose-Derived Stem Cells Marked by Distinct Transcriptional Regulation Compared to Differentiated Cells
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6
Project description:Cells obtained from adipose tissue are able to differentiate into megakaryocytes. We compared the gene expression profile of human adipose tissue derived megakaryocytes with that of megakaryocytes differentiated from human CD34 positive cord blood hematopoietic stem cells.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.