Project description:Bacterial microbiome of Opuntia ficus indica in rhizosphere (Soil) and roots samples collected following bioclimatic aridity gradient in Tunisia
Project description:Fungal microbiome of Opuntia ficus-indica in rhizosphere (Soil) and roots samples collected following bioclimatic aridity gradient in Tunisia
Project description:Plant response to insect feeding appears to be highly specific with regard to the organisms in the system. Here, we report on the interaction between grapevine Vitis vinifera plants and a phloem-feeding insect pest, the vine mealybug Planococcus ficus. Plants were exposed to P. ficus for periods of 6 hours and 96 hours, after which they were analysed for gene expression levels using microarrays and quantitative real-time PCR (qPCR). Both methods showed that grapevine displayed only a minimal response to mealybug feeding at the transcript level at both time periods. Intermediate grapevine exposure times (24, 48 and 72 hours) to P. ficus feeding were investigated using qPCR analysis of ten additional genes associated with known plant defense responses. Results showed that only a single gene, pathogenesis-related protein 1, was differentially expressed after 48 hours of mealybug feeding. During the course of mealybug feeding, however, a number of other genes were significantly up- or down-regulated at certain time points. Thus, it appears as if grapevine responds minimally to feeding by P. ficus as well as within a very narrow time period. The relative lack of grapevine plant defense mechanisms may be a result of the feeding strategies of mealybugs.
Project description:Nopal (Opuntia ficus indica) belonging to the Cactacea family has many nutritional benefits attributed to a wide variety of phenolic and flavonoid compounds. Coumaric acid (COA), ferulic acid (FLA), protocatechuic acid (PRA), and gallic acid (GAA) are the phenolic acids (PhAs) present in nopal. In this study, the role of these PhAs in copper-induced oxidative stress was investigated using the density functional theory (DFT). The PhAs form 5 thermodynamically favorable complexes with Cu(II), their conditional Gibbs free energies of reaction (ΔG', at pH = 7.4, in kcal/mol) are from -23 kcal/mol to -18 kcal/mol. All of them are bi-dentate complexes. The complexes of PRA and GAA are capable of inhibiting the Cu(II) reduction by both O2•- and Asc-, their reactions with the chelated metal are endergonic having rate constants about ~10-5-102 M-1 s-1, PhAs can prevent the formation of hydroxyl free radicals by chelating the copper ions. Once the hydroxyl radicals are formed by Fenton reactions, the complexes of PhAs with Cu(II) can immediately react with them, thus inhibiting the damage that they can cause to molecules of biological interest. The reactions between PhAs-Cu(II) complexes and hydroxyl free radical were estimated to be diffusion-limited (~108 M-1s-1). Thus, these chelates can reduce the harmful effects caused by the most reactive free radical existent immediately after it is formed by Fenton reactions.
Project description:Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient.
Project description:Various dried (by-)products from the Tunisian O. ficus-indica were elucidated for their proximate composition, fatty acid (FA) composition, inorganic elements, sugars, and polyphenols. Nopal and prickly pear peel and seeds were abundant in fiber (respectively, 28.39, 12.54, and 16.28%). Seeds had also high protein (17.34%) and may be source of an edible oil, due to lipids (9.65%) poor in saturated FAs (14.12%) and rich in linoleic acid (61.11%). Nopal and peel showed the highest levels of Mg (493.57 and 345.19 mg/100 g), K (6949.57 and 1820.83 mg/100 g), Mn (59.73 and 46.86 mg/Kg) and Fe (23.15 and 15.23 mg/Kg), while the fruit pulp predominantly constituted of sugars, glucose and arabinose being predominant (42.57 and 13.56 g/100 g). Total polyphenols widely varied among the Opuntia products (108.36-4785.36 mg GAE/100 g), being mainly represented by hydroxycinnamic and hydroxybenzoic acids, and flavonoids as well. In particular, peel may be revalorized for these valuable bioactives, including 4-hydroxybenzoic acid (484.95 mg/100 g), cinnamic acid (318.95 mg/100 g), rutin (818.94 mg/100 g), quercetin (605.28 mg/100 g), and several isorhamnetin and kaempferol glycosides. Overall, the Tunisian prickly pear cactus could encourage a sustainable production, an effective waste management, and may provide several benefits for human health, in accordance with the model of the Mediterranean diet.