Project description:We analyzed miRNA profiles in normal liver and identified miR-709, a highly abundant miRNA in this tissue. Through microarray analysis, gene targets were identified. Thirty-six genes were significantly down-regulated >2-fold in the miR-709-treated relative to the control group, and at least three of them, including Ras-related protein 11b (Rab11b), phosphatidylcholine transfer protein (Pctp), and carboxylesterase 1g (Ces1g), are direct targets. miR-709 regulates genes implicated in cytoskeleton organization, extracellular matrix attachment, cell proliferation and fatty acid metabolism, suggesting a coordinated response during cell division, when cytoskeleton remodeling requires substantial changes in gene expression.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Total RNA-seq analysis of mouse liver following LNA treatment in vivo to identify mRNA targets of mmu-miR-802-5p and mmu-miR-1948-5p.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:RNA-seq expression analysis of mouse liver treated with locked nucleic acids (LNAs) that inhibit mmu-miR-802-5p and mmu-miR-1948-5p
Project description:Objective: To investigate the impact of JTXK granule on the miRNA expression profiles in hepatic tissue of diabetic mice, and to explore the molecular targets and associated signaling pathways of JTXK granule in its anti-diabetic effect. Methods: High fat diet was used to induce diabetic model, and mice were subsequently divided into JTXK-treated group and model group. After 8 weeks’ intervention we screened the differentially expressed miRNAs between the two groups using microRNA sequencing analysis (3 mice in each group). Finally, miRNA target gene prediction, GO and KEGG analysis were applied to explore the function of DEMs. Results: A total of 33 significantly differentiated miRNAs were detected in comparison between the two groups (|log2(fold change) |>0.3, P<0.05). MiRNA-mRNA analysis showed that mmu-miR-30a-5p, mmu-miR-23b-5p, mmu-miR-199a-5p, mmu-miR-425-5p and mmu-miR-214-3p are closely related to inflammatory response, histological changes and insulin signal transduction in liver. In addition, KEGG analysis showed that the DEMs were closely related to Ras and insulin signaling pathway. Conclusion: JTXK granule exerts anti-diabetic effect in hepatic tissue of diabetic mice by modulating miRNAs and mRNAs network.
Project description:Liver is uniquely capable to repair itself after injury. Multiple molecular and biochemical processes initiated after partial hepatectomy, lead to proliferation of all cells within the liver. MicroRNAs (miRNAs) are a class of highly abundant non-coding RNA molecules that cause post-transcriptional gene repression and are involved in several biological processes including cell cycle regulation and differentiation. We examined the expression levels of miRNAs in liver tissue received from control mice (L0) and compared them with the corresponding levels in liver tissue 12 hours after liver regeneration induced by 2/3 partial hepatectomy (L12). MicroRNA expression was investigated using microRNA profiling. Further qPCR analysis was used for validation of the differentially expressed microRNAs at an early stage of liver regeneration, induced by 2/3 partial hepatectomy. TargetScan and Gene Ontology (GO) analysis was performed in order to identify the possible miRNA target genes and their ontology, respectively. A subset of miRNAs were found to be differentially expressed during liver regeneration. Mmu-miR-21 and mmu-miR-30b* showed the higher levels of up-regulation in liver tissue from the hepatectomized mice at the end of the experiment (L12) compared to the sham operated mice (L0). Mmu-miR-21 up-regulation was further confirmed by qPCR. In situ hybridization (ISH) revealed that mmu-miR-21 exhibited the higher levels of expression at 12 hours post hepatectomy. On the contrary, mmu-miR-34c*, mmu-miR-144, mmu-miR-207, mmu-miR-207, mmu-miR-451, mmu-miR-582-3p and mmu-miR-290-5p exhibited <0.5 down-regulation in liver tissue after partial hepatectomy in L12 vs. L0 mice. Microarrays and qPCR results were in good agreement (Pearson correlation = 0.881). Our results provide important information regarding how microRNAs are deferentially expressed in murine liver tissue before and after partial hepatectomy. The early up-regulation of mmu-miR-21 during the process of liver regeneration suggests a regulatory role in liver regeneration in vivo.
Project description:BACKGROUND: Long terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes. RESULTS: Using a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time. CONCLUSIONS: All families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.