Project description:Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset syndrome characterized by progressive degeneration of particular muscles. OPMD is caused by short GCG repeat expansions within the gene encoding the nuclear poly(A)-binding protein 1 (PABPN1) that extend an N-terminal polyalanine tract in the protein. Mutant PABPN1 aggregates as nuclear inclusions in OMPD patient muscles. We have created a Drosophila model of OPMD that recapitulates the features of the human disorder: progressive muscle degeneration, with muscle defects proportional to the number of alanines in the tract, and formation of PABPN1 nuclear inclusions. Wild-type human PABPN1 contains a stretch of 10 alanines following the initial methionine, which is expanded to 12–17 alanines in OPMD patients. In Drosophila, the PABPN1 homolog is the poly(A)-binding protein 2 (PABP2), which has the same function as PABPN1 in nuclear polyadenylation but lacks a polyalanine tract at the N-terminus. We used the UAS/Gal4 system to express mammalian PABPN1 in Drosophila. An alanine-expanded PABPN1 cDNA (encoding the 17 alanine tract) was cloned downstream of UAS sequences (UAS-PABPN1). Transgenic lines containing this construct were crossed to a Mhc-Gal4 driver, leading to muscle-specific expression. To gain insight into the molecular and physiological defects in OPMD we performed a transcriptomic analysis in OPMD fly muscles. Using microarrays, thorax gene expression was compared between control flies (Mhc-Gal4/+) and flies expressing PABPN1-17ala in thoracic muscles (UAS-PABPN1-17ala/+; Mhc-Gal4/+), at three time points (days 2, 6 and 11). Transcriptome of thorax RNA samples from control (Mhc-Gal4/+) flies and flies expressing PABPN1-17ala (UAS-PABPN1-17ala/+; Mhc-Gal4/+)
Project description:Transcriptional profiling of Indy long lived flies and controls over the course of their entire lifespan. Mutations in the Indy gene extend life span in Drosophila melanogaster. This study investigates the changes in gene expression over time in Indy206 flies heterozygous over Canton-S (Indy206/CS) and compares them to genetically matched heterozygous controls (2216/CS). Samples from both fly strains were collected at age: 5, 10, 20, 30, 40, 50, 70 and 80. mRNA samples were collected from the head and thorax of Indy206 and genetically matched control male adult flies at day 5, and every 10 days from day 10 to day 80 (day 60 excluded) and hybridized to two-color microarrays
Project description:Protein expression profiles in the whole tissue lysate extracted from the thorax of O1 and O3 long-lived flies with the control B3 strain flies and analyzed by tandem mass tag (TMT)–based mass spectrometry.
Project description:A method for the long-term maintenance of germ-free flies was established using aseptic isolators. The methodology effectively and reliably yields large numbers of germ-free flies in homogeneous cultures. Germ-free flies exhibited increased lifespan (only female flies) and decreased egg production, markedly reduced fat storage, less midday sleep, and enhanced aggressiveness (male flies). Fructilactobacillus—a species of fly intestinal microbes—was re-colonized in germ-free flies, and these gnotobiotic flies were successfully maintained for numerous generations. The proteome of those flies were analyzed.