Project description:The retinal pigment epithelium (RPE) provides vital support to photoreceptor cells and its dysfunction is associated with the onset and progression of age-related macular degeneration (AMD). Surgical provision of RPE cells may ameliorate AMD and thus it would be valuable to develop sources of patient-matched RPE cells for this application of regenerative medicine. We describe here the generation of functional RPE-like cells from fibroblasts that represent an important step toward that goal. We identified candidate master transcriptional regulators of RPEs using a novel computational method and then used these regulators to guide exploration of the transcriptional regulatory circuitry of RPE cells and to reprogram human fibroblasts into RPE-like cells. The RPE-like cells share key features with RPEs derived from healthy individuals, including morphology, gene expression and function, and thus represent a step toward the goal of generating patient-matched RPE cells for treatment of macular degeneration. Expression analysis was performed on induced retinal pigment epithelium-like cells.
Project description:Compare transcriptomes of control and USH1B patient iPSC-derived retinal pigment epithelium (RPE) to elucidate disease mechanisms of Usher syndrome type IB (USH1B). USH1B patient fibroblasts were collected at Great Ormond Street Hospital (GOSH) and reprogrammed to iPSCs. Control and patient iPSCs differentiated in vitro to generate retinal pigment epithelium (RPE) and collected for RNA-seq at 24 week. Sequencing was performed at University College London (UCL) Genomics on a NovaSeq 6000 system. Data aligned to the human genome UCSC hg38 using RNA-STAR 2.5.2b.