Project description:We investigated gene expression profiles of Parkinson disease (PD) patient's fibroblasts that were treated by SNCA expression-control RNAi to see adverse effects of the RNAi treatment. The data suggested no significant adverse effects caused by the treatment. Total RNA samples prepared from PD fibroblasts that were treated by SNCA expression-control RNAi and by non-silencing RNAi as a control.
Project description:We investigated gene expression profiles of Parkinson disease (PD) patient's fibroblasts that were treated by SNCA expression-control RNAi to see adverse effects of the RNAi treatment. The data suggested no significant adverse effects caused by the treatment.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Importance. Biological markers of Parkinson’s disease are essential for achieving disease modification. Objective. To determine the association of SNCA blood transcript levels with prevalence of Parkinson’s disease. Background. The SNCA locus is preferentially transcribed in neurons and blood cells. Non-coding genetic variants and neuronal aggregates of α-synuclein protein associate this locus with sporadic Parkinson’s disease and suggest a potential role for abnormal SNCA transcription in the disease mechanism. Here we investigated variation in intracellular SNCA gene expression and SNCA transcript isoform abundance in circulating blood cells of cases with PD and controls in a network of biobanks that represent regional, national, and international populations. Design, Setting, Participants. Three cross-sectional, case-control studies nested in observational biomarker studies. 222 cases with early-stage clinical PD and 183 controls were enrolled from 2005 to 2010 in the Harvard Biomarker Study (HBS) at two Harvard-affiliated tertiary care centers. 76 cases with dopamine transporter imaging (DAT)-confirmed PD and 42 controls were enrolled between August 2007 and December 2008 in the Blood α-Synuclein, Gene Expression and Smell Testing as Diagnostic and Prognostic Biomarkers in Parkinson’s Disease Study (PROBE) study from 22 US tertiary care centers. 202 DAT-confirmed cases with de novo PD and 138 controls were enrolled in the Parkinson’s Progression Markers Initiative (PPMI) between July 2010 and November 2012 from 22 US and international tertiary care centers. Main Outcome Measures. Association of intracellular SNCA transcript abundance with PD estimated on analog and digital expression platforms. Results. Reduced levels of SNCA transcripts were associated with early-stage clinical PD, neuroimaging-confirmed PD, and untreated, neuroimaging-confirmed PD in accessible, peripheral blood cells from a total of 863 individuals. SNCA expression was reduced by 17%, 22%, and 16% in cases compared to controls in the HBS, PROBE, and PPMI study with P values of 0.004, 0.025, and 0.018, respectively, after adjusting for clinical, hematological, and processing covariates. Specific SNCA transcripts with long 3’ untranslated regions (UTR) and those skipping exon 5 are implicated in the accumulation and mitochondrial targeting of α-synuclein protein in Parkinson’s pathology. These transcript isoforms were linked to PD through digital expression analysis. Individuals in the lowest quartile of SNCA expression values had covariate-adjusted odds ratios for PD of 2.14 (95% C. I. 1.1-4.1), 4.5 (95% C. I. 1.3-15), and 2.1 (1.1-4.0) compared to individuals in the highest quartile of expression values in the HBS, PROBE, and PPMI study, respectively. Conclusions and Relevance. Reduced levels of SNCA expression, particularly of disease-relevant transcripts with extended 3’ UTR or exon 5 skipping, are associated with early-stage PD. These findings support a potential role for SNCA as a transcriptional marker of PD and may have implications for patient stratification and risk assessment.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.