Project description:Total RNA was extracted at different stages (TV, T0, T11 and T20) during autogamy of strain d4-2. Genes specifically induced during autogamy were identified following analysis of microarray hybridization data 3 technical replicates of the time course were hybridized Subset one and three were labelled with Cy3 Subset two was labelled with Cy5
Project description:In the ciliate Paramecium tetraurelia, autogamy is a self-fertilization process, during which the zygotic nucleus results from the fusion of two identical gametic nuclei. This phenomenon occurs in response to starvation. It starts with meiosis of the germline nuclei (micronuclei or MIC) and fragmentation of the parental somatic nucleus (macronucleus or MAC). This is followed by mitotic division of one haploid nucleus issued from meiosis to yield two identical gametic nuclei, then karyogamy takes place, followed by mitosis of zygotic nucleus and differentiation of new MICs and MACs from the resulting copies of the zygotic nucleus. Within the developing new MACs, developmentally programmed DNA amplification and extensive genome rearrangements (precise excision of short non coding Internal Eliminated Sequences and chromosome fragmentation associated with the imprecise elimination of repetitive DNA) give rise to the highly polyploid somatic genome. To gain further insight into the complex regulation of these successive steps, we used whole genome microarrays to study the different gene networks that become activated throughout autogamy. Total RNA was extracted before the begining of autogamy (reference sample) and at 5 different time points during the process of autogamy. There are two biological replicates for each point.
Project description:In the ciliate Paramecium tetraurelia, autogamy is a self-fertilization process, during which the zygotic nucleus results from the fusion of two identical gametic nuclei. This phenomenon occurs in response to starvation. It starts with meiosis of the germline nuclei (micronuclei or MIC) and fragmentation of the parental somatic nucleus (macronucleus or MAC). This is followed by mitotic division of one haploid nucleus issued from meiosis to yield two identical gametic nuclei, then karyogamy takes place, followed by mitosis of zygotic nucleus and differentiation of new MICs and MACs from the resulting copies of the zygotic nucleus. Within the developing new MACs, developmentally programmed DNA amplification and extensive genome rearrangements (precise excision of short non coding Internal Eliminated Sequences and chromosome fragmentation associated with the imprecise elimination of repetitive DNA) give rise to the highly polyploid somatic genome. To gain further insight into the complex regulation of these successive steps, we used whole genome microarrays to study the different gene networks that become activated throughout autogamy. Total RNA was extracted before the begining of autogamy (reference sample) and at 3 different time points during the process of autogamy.
Project description:In the ciliate Paramecium tetraurelia, autogamy is a self-fertilization process, during which the zygotic nucleus results from the fusion of two identical gametic nuclei. This phenomenon occurs in response to starvation. It starts with meiosis of the germline nuclei (micronuclei or MIC) and fragmentation of the parental somatic nucleus (macronucleus or MAC). This is followed by mitotic division of one haploid nucleus issued from meiosis to yield two identical gametic nuclei, then karyogamy takes place, followed by mitosis of zygotic nucleus and differentiation of new MICs and MACs from the resulting copies of the zygotic nucleus. Within the developing new MACs, developmentally programmed DNA amplification and extensive genome rearrangements (precise excision of short non coding Internal Eliminated Sequences and chromosome fragmentation associated with the imprecise elimination of repetitive DNA) give rise to the highly polyploid somatic genome. To gain further insight into the complex regulation of these successive steps, we used whole genome microarrays to study the different gene networks that become activated throughout autogamy. Total RNA was extracted before the begining of autogamy (c3_vegetative cells : reference sample) and at 5 different time points during the process of autogamy.
Project description:Total RNA was extracted at different stages (TV, T0, T11 and T20) during autogamy of strain d4-2. Genes specifically induced during autogamy were identified following analysis of microarray hybridization data
Project description:Paramecium cells in stationary phase were treated for deciliation and total mRNA extracted at two time points (45 and 130 minutes) after deciliation. Keywords: Time course analysis of expression during reciliation
Project description:In the ciliate Paramecium tetraurelia, autogamy is a self-fertilization process, during which the zygotic nucleus results from the fusion of two identical gametic nuclei. This phenomenon occurs in response to starvation. It starts with meiosis of the germline nuclei (micronuclei or MIC) and fragmentation of the parental somatic nucleus (macronucleus or MAC). This is followed by mitotic division of one haploid nucleus issued from meiosis to yield two identical gametic nuclei, then karyogamy takes place, followed by mitosis of zygotic nucleus and differentiation of new MICs and MACs from the resulting copies of the zygotic nucleus. Within the developing new MACs, developmentally programmed DNA amplification and extensive genome rearrangements (precise excision of short non coding Internal Eliminated Sequences and chromosome fragmentation associated with the imprecise elimination of repetitive DNA) give rise to the highly polyploid somatic genome. To gain further insight into the complex regulation of these successive steps, we used whole genome microarrays to study the different gene networks that become activated throughout autogamy.
Project description:In the ciliate Paramecium tetraurelia, autogamy is a self-fertilization process, during which the zygotic nucleus results from the fusion of two identical gametic nuclei. This phenomenon occurs in response to starvation. It starts with meiosis of the germline nuclei (micronuclei or MIC) and fragmentation of the parental somatic nucleus (macronucleus or MAC). This is followed by mitotic division of one haploid nucleus issued from meiosis to yield two identical gametic nuclei, then karyogamy takes place, followed by mitosis of zygotic nucleus and differentiation of new MICs and MACs from the resulting copies of the zygotic nucleus. Within the developing new MACs, developmentally programmed DNA amplification and extensive genome rearrangements (precise excision of short non coding Internal Eliminated Sequences and chromosome fragmentation associated with the imprecise elimination of repetitive DNA) give rise to the highly polyploid somatic genome. To gain further insight into the complex regulation of these successive steps, we used whole genome microarrays to study the different gene networks that become activated throughout autogamy.
Project description:In the ciliate Paramecium tetraurelia, autogamy is a self-fertilization process, during which the zygotic nucleus results from the fusion of two identical gametic nuclei. This phenomenon occurs in response to starvation. It starts with meiosis of the germline nuclei (micronuclei or MIC) and fragmentation of the parental somatic nucleus (macronucleus or MAC). This is followed by mitotic division of one haploid nucleus issued from meiosis to yield two identical gametic nuclei, then karyogamy takes place, followed by mitosis of zygotic nucleus and differentiation of new MICs and MACs from the resulting copies of the zygotic nucleus. Within the developing new MACs, developmentally programmed DNA amplification and extensive genome rearrangements (precise excision of short non coding Internal Eliminated Sequences and chromosome fragmentation associated with the imprecise elimination of repetitive DNA) give rise to the highly polyploid somatic genome. To gain further insight into the complex regulation of these successive steps, we used whole genome microarrays to study the different gene networks that become activated throughout autogamy.