Project description:Identify genes in the liver whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. The RMA values of genes were used for genome wide association as described in Parks et al Cell Metabolism 2015. These data are used to identify candidate genes at loci associated with obesity and dietary responsiveness. GWAS for expression of liver in inbred strains fed chow diet for 8 weeks followed by high-fat/high-sucrose diet 8 weeks
Project description:Identify genes in the skeletal muscle whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. The neqc-normalized values of genes were used for genome wide association. These data are used to identify candidate genes at loci associated with obesity and dietary responsiveness. GWAS for expression of skeletal muscle in inbred strains fed chow diet for 8 weeks followed by high-fat/high-sucrose diet 8 weeks
Project description:Identify genes in the gonadal adipose tissue whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. The RMA values of genes were used for genome wide association as described in Parks et al Cell Metabolism 2015. These data are used to identify candidate genes at loci associated with obesity and dietary responsiveness. GWAS for expression of gonadal adipose tissue in inbred strains fed chow diet for 8 weeks followed by high-fat/high-sucrose diet 8 weeks
Project description:C57Bl6/J male mice were put on different diets at 5 weeks of age, with a standard diet (SD) or a High-Fat High-Sucrose Diet (HFHS) or a Choline-Deficient High-Fat Diet (CDHFD) during 6 months. Primary hepatocytes cultures from 3 different models were synchronized in the cell cycle. Transcriptomic analysis was perfomed at 48hours of culture when HFHS and CDHFD hepatocytes harbor replication stress.
Project description:We report that maternal high-fat, high-sucrose diet during pregnancy affects metabolic disorders on the liver of offspring via DNA hypermethylation and hypomethylation.
Project description:To assess the effect of steatosis and oxidative stress on progression of liver fibrosis, we have employed whole genome microarray expression profiling as a discovery platform to identify genes that are related with oxidative stress- and steatosis-induced hepatic fibrogenesis. When wild type mice were fed high-fat/high-sucrose diet for 24 weeks, expression of 69 genes was changed more than 10-fold compared with wild type animals fed normal diet, 11 of which were categorized to lipid metabolic process. Moreover, expression of 208 genes showed more than 5-fold changes in Tet-mev-1 mice fed high-fat/high-sucrose diet compared with the same transgenic animals fed normal diet, and gene ontology analyses indicated significant changes in chemokine activity and chemokine receptor binding as well as defense and immune responses. oxidative stress and high fat high calorie induced gene expression in wild type or Tet-mev-1 mouse liver tissue. wild type and Tet-mev-1 mice were fed either normal diet or high fat high sucrose diet for 4 months, and have been given doxycycline-containing water from embryo. Each group were perfomed by duplicate.
Project description:In order to study the heart disorder that the long term, high energy diet caused, Bama miniature pigs were fed a high-fat, high-sucrose diet for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased heart weight (1.82-fold, P<0.05) and heart volume (1.60-fold, P<0.05) compared with the control pigs. To understand the molecular mechanisms of cardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips.
Project description:In order to study the heart disorder that the long term, high energy diet caused, Bama miniature pigs were fed a high-fat, high-sucrose diet for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased heart weight (1.82-fold, P<0.05) and heart volume (1.60-fold, P<0.05) compared with the control pigs. To understand the molecular mechanisms of cardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips. The control group consisted of 6 Bama pigs fed a control diet, and the HFHSD group comprised 6 pigs that were induced with a HFHS diet, which included 37% sucrose, 53% control diet and 10% pork lard. The pigs were fed twice every day and provided water ad libitum for 23 months. The pigs were fasted for 12 hours and euthanized with ketamine and xylazine. Pig hearts from the HFHSD group pigs (120, 126, 138, 140, 144, and 146) and three control group pigs (157, 159, and 161) were sampled and preserved in liquid nitrogen and then for RNA extraction and hybridization on Affymetrix microarrays.
Project description:To assess the effect of steatosis and oxidative stress on progression of liver fibrosis, we have employed whole genome microarray expression profiling as a discovery platform to identify genes that are related with oxidative stress- and steatosis-induced hepatic fibrogenesis. When wild type mice were fed high-fat/high-sucrose diet for 24 weeks, expression of 69 genes was changed more than 10-fold compared with wild type animals fed normal diet, 11 of which were categorized to lipid metabolic process. Moreover, expression of 208 genes showed more than 5-fold changes in Tet-mev-1 mice fed high-fat/high-sucrose diet compared with the same transgenic animals fed normal diet, and gene ontology analyses indicated significant changes in chemokine activity and chemokine receptor binding as well as defense and immune responses.