Project description:We report the 4.9-Mb genome sequence of Citrobacter freundii strain GTC 09479, isolated from urine sample collected during the year 1983 at Gifu University Graduate School of Medicine, Japan. This draft genome consist of 4,899,578 bp with 51.62% G + C, 4,574 predicted CDSs, 72 tRNAs and 10 rRNAs.
Project description:Citrobacter freundii is a species of facultative anaerobic Gram-negative bacteria of the family Enterobacteriaceae The complete genome is composed of a single chromosomal circle of 4,957,773 bp with a G+C content of 52%.
Project description:Here, we present the draft genome sequence of Citrobacter freundii strain A47 with a length of 4,878,242 bp, which contains 4,357 putative protein coding genes, including 270 unique genes. This work is expected to assist in obtaining novel gene(s) that code for deoxynivalenol (DON) de-epoxidation enzyme(s).
Project description:Sepsis resulting from microbial colonization of the bloodstream is a serious health concern associated with high mortality rates. The objective of this study was to define the physiologic requirements of Citrobacter freundii in the bloodstream as a model for bacteremia caused by opportunistic Gram-negative pathogens. A genetic screen in a murine host identified 177 genes that contributed significantly to fitness, the majority of which were broadly classified as having metabolic or cellular maintenance functions. Among the pathways examined, the Tat protein secretion system conferred the single largest fitness contribution during competition infections and a putative Tat-secreted protein, SufI, was also identified as a fitness factor. Additional work was focused on identifying relevant metabolic pathways for bacteria in the bloodstream environment. Mutations that eliminated the use of glucose or mannitol as carbon sources in vitro resulted in loss of fitness in the murine model and similar results were obtained upon disruption of the cysteine biosynthetic pathway. Finally, the conservation of identified fitness factors was compared within a cohort of Citrobacter bloodstream isolates and between Citrobacter and Serratia marcescens, the results of which suggest the presence of conserved strategies for bacterial survival and replication in the bloodstream environment.
Project description:The ability of a bacterial population to survive in different niches, as well as in stressful and rapidly changing environmental conditions, depends greatly on its genetic content. To survive such fluctuating conditions, bacteria have evolved different mechanisms to modulate phenotypic variations and related strategies to produce high levels of genetic diversity. Laboratories working in microbiological diagnosis have shown that Citrobacter freundii is very versatile in its colony morphology, as well as in its biochemical, antigenic and pathogenic behaviours. This phenotypic versatility has made C. freundii difficult to identify and it is frequently confused with both Salmonella enterica and Escherichia coli. In order to determine the genomic events and to explain the mechanisms involved in this plasticity, six C. freundii isolates were selected from a phenotypic variation study. An I-CeuI genomic cleavage map was created and eight housekeeping genes, including 16S rRNA, were sequenced. In general, the results showed a range of both phenotypes and genotypes among the isolates with some revealing a greater similarity to C. freundii and some to S. enterica, while others were identified as phenotypic and genotypic intermediary states between the two species. The occurrence of these events in natural populations may have important implications for genomic diversification in bacterial evolution, especially when considering bacterial species boundaries. In addition, such events may have a profound impact on medical science in terms of treatment, course and outcomes of infectious diseases, evading the immune response, and understanding host-pathogen interactions.
Project description:Citrobacter freundii strain ST2, isolated from the algae bloom sample, possesses an N-acylhomoserine lactone (AHL) production activity that secretes short-chain AHL molecules. In this study, we sequenced the complete genome of C. freundii strain ST2 to understand the molecular regulation of the AHL system and to search for the AHL gene in this bacterium. The results show that the genome size is 4.89 Mb with a G + C content of 51.96%. 4626 function proteins were predicted and 3647 proteins were assigned to COG functional categories. A predicted AHL-coding gene LuxR was found at contig 4 and the length was 1541 bp. The strain temporary deposited at Shenzhen Public Platform of Screening & Application of Marine Microbial Resources (Shenzhen, China), and the genome sequence can be accessed at GenBank under the accession no. LJSQ00000000.
Project description:Citrobacter freundii is a Gram-negative opportunistic pathogen that is increasingly being recognized as a causative agent of hospital-acquired urinary tract infections and an important reservoir of antimicrobial resistance determinants. In this report, we describe the finished genome sequence of C. freundii strain SL151, a highly multidrug-resistant human urine isolate.