Project description:Global mRNA expression profiling of patient derived pancreatic carcinoma xenograft Bo63 were collected using Agilent human whole genome array (G4845A AMADID 026652, cRNA 4x44k V2) . Two different sources of RNA were analyzed: 1.) Bo63 xenograft tumors grown on nude mice treated with vehicle only as control. 2.) Bo63 xenograft tumor grown on nude mice treated with JQ1 and SAHA (SAHA 25 mg/kg 1-0-0 and JQ1 50 mg/kg 0-0-1, treatment was imitated when tumor size reached 200 mm³ +/- 20 mm³. Two conditions (vehicle vs JQ1-SAHA treatment), each condition is represented by 3-4 biological replicates
Project description:Global mRNA expression profiling of patient derived pancreatic carcinoma xenograft Bo63 were collected using Agilent human whole genome array (G4845A AMADID 026652, cRNA 4x44k V2) . Two different sources of RNA were analyzed: 1.) Bo63 xenograft tumors grown on nude mice treated with vehicle only as control. 2.) Bo63 xenograft tumor grown on nude mice treated with JQ1 and SAHA (SAHA 25 mg/kg 1-0-0 and JQ1 50 mg/kg 0-0-1, treatment was imitated when tumor size reached 200 mm³ +/- 20 mm³.
Project description:Global mRNA expression profiles of murine primary PDAC cells following JQ1 or SAHA monotherapy as well as JQ1-SAHA combination therapy were collected using Affymetix mouse whole genome array (Mouse Genome 430A 2.0 Array) . Primary PDAC cells isolated from Ptf1aCre/+;Kras+/LSL-G12D;p53lox/lox (Kras;p53) mice were treated either with JQ1 (100 nM) or SAHA (2000 nM) or vehicle 10% (2-Hydroxypropyl)-β-cyclodextrin (Sigma-Aldrich) or as combination therapy with the indicated dosage for monotherapy. Total RNA isolation was performed after 6 hours of treatment. Primary PDAC cells from Ptf1aCre/+;Kras+/LSL-G12D;p53lox/lox (Kras;p53) mice treated either with JQ1, SAHA, vehicle or JQ1-SAHA combination were analyzed by global gene expression analysis.
Project description:Global mRNA expression profiles of murine primary PDAC cells following JQ1 or SAHA monotherapy as well as JQ1-SAHA combination therapy were collected using Affymetix mouse whole genome array (Mouse Genome 430A 2.0 Array) . Primary PDAC cells isolated from Ptf1aCre/+;Kras+/LSL-G12D;p53lox/lox (Kras;p53) mice were treated either with JQ1 (100 nM) or SAHA (2000 nM) or vehicle 10% (2-Hydroxypropyl)-β-cyclodextrin (Sigma-Aldrich) or as combination therapy with the indicated dosage for monotherapy. Total RNA isolation was performed after 6 hours of treatment.
Project description:Global mRNA expression profiling of murine primary PDAC cells following JQ1 or SAHA monotherapy as well as JQ1-SAHA combination therapy
Project description:SAHA/JQ1 reduces in vivo tumorigenesis and proliferation of KP sarcoma cells. This model recapitulates human undifferentiated pleomporphic sarcoma (UPS). We used microarrays to investigate changes in global gene expression in response to these drugs.
Project description:This project describes the establishment and validation of a murine orthotopic xenograft model using fresh human tumor samples that recapitulates the critical components of human pancreatic adenocarcinoma. The authors discuss the proven and theoretical advantages of the model as well as future translational implications. Background: Relevant preclinical models that recapitulate the key features of human pancreatic ductal adenocarcinoma (PDAC) are needed in order to provide biologically tractable models to probe disease progression and therapeutic responses and ultimately improve patient outcomes for this disease. Here, we describe the establishment and clinical, pathological, molecular and genetic validation of a murine, orthotopic xenograft model of PDAC. Methods: Human PDACs were resected and orthotopically implanted and propagated in immunocompromised mice. Patient survival was correlated with xenograft growth and metastatic rate in mice. Human and mouse tumor pathology were compared. Tumors were analyzed for genetic mutations, gene expression, receptor tyrosine kinase (RTK) activation, and cytokine expression. Results: Fifteen human PDACs were propagated orthotopically in mice. Xenografts developed peritoneal and liver metastases. Time to growth and metastatic efficiency in mice each correlated with patient survival. Tumor architecture, nuclear grade and stromal content were similar in patient and xenografted tumors. Propagated tumors closely exhibited the genetic and molecular features known to characterize pancreatic cancer (e.g. high rate of KRAS, p53, SMAD4 mutation and EGFR activation). The correlation coefficient of gene expression between patient tumors and xenografts propagated through multiple generations was 93 to 99%. Analysis of gene expression demonstrated distinct differences between xenografts from fresh patient tumors versus commercially available PDAC cell lines. Conclusions: Our orthotopic xenograft model derived from fresh human PDACs closely recapitulates the clinical, pathologic, genetic and molecular aspects of human disease. This model has resulted in the identification of rational therapeutic strategies to be tested in clinical trials and will permit additional therapeutic approaches and identification of biomarkers of response to therapy. 47 Samples in total were generated for normal pancreatic tissue in patients, pancreatic tumors in patients, pancreatic tumors propagated in a mouse xenograft model, and pancreatic cancer cell lines in vitro. Clustering analysis was performed to evaluate the differences between patient tumors, xenograft tumors, established cancer cell lines, and cell lines derived from xenografts.
Project description:Primary effusion lymphoma (PEL) is an aggressive subtype of non-Hodgkin lymphoma caused by Kaposi’s sarcoma-associated herpesvirus infection, which is most commonly seen in HIV-positive patients. Induction of HIV reactivation by external stimuli in the presence of highly active anti-retroviral therapy (HAART) has been examined for its efficacy to eradicate latently infected HIV. Similary, lytic activation of viruses from latently infected tumor cells with anti-cancer drugs represents an effective strategy of anti-neoplastic therapy, through the induction of oncolysis by viral replication, stimulation of immune responses to the viral lytic antigens, and intrinsic effects of cancer drugs. Here we examined the combination of PEP005 with epigenetic drugs as a rational therapeutic strategy to target both in AIDS-associated KSHV-mediated malignancies. JQ1, a bromodomain and extra terminal protein (BET) inhibitor, in combination with a FDA-approved drug, PEP005, not only robustly induced KSHV lytic replication, but also inhibited IL-6 and VEGF production from PEL cells. This combination has been proposed for use in reactivation of HIV from latently infected T-cells, and the same combination and dosage inhibited PEL growth in vitro and delayed tumor growth in a PEL xenograft tumor model. Downstream activation of NF-B by PEP005 combined with sequestration of bromodomain-containing protein 4 (BRD4) by JQ1 robustly increased occupancy of RNA polymerase II onto the KSHV genome. RNA-sequencing analysis further revealed cellular targets of PEP005, JQ1, and the synergistic effects of both. We suggest that the combination of PEP005 with JQ1 should be considered as a rational therapeutic approach for HIV-associated PEL.
Project description:For the microarray experiments, MV4-11 and MOLM-14 cells were treated with DMSO control, ABT-869 3 nM, SAHA 6 M and combination therapy for 24 hours. Cells were then washed in PBS and high-quality total RNA was extracted RNeasy Midi Kit, according to the manufacturer’s instruction (Qiagen, Valencia, USA). RNA quantity, quality, and purity were assessed with the use of the RNA 6000 Nano assay on the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara CA, USA). Gene expression profiling was performed using Affymetric U133plus2.0 gene chip (Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s protocol. MV4-11 and MOLM-14 cells were treated with DMSO control, ABT-869, SAHA or combination therapy for 24 hours.