Project description:Changing salinity in estuaries due to sea level rise and altered rainfall patterns, as a result of climate change, has the potential to influence the interactions of aquatic pollutants as well as to alter their toxicity. From a chemical property point of view, ionic concentration can increase the octanol-water partition coefficient and thus decrease the water solubility of a compound. Biologically, organism physiology and enzyme metabolism are also altered at different salinities with implications for drug metabolism and toxic effects. This highlights the need to understand the influence of salinity on pesticide toxicity when assessing risk to estuarine and marine fishes, particularly considering that climate change is predicted to alter salinity regimes globally and many risk assessments and regulatory decisions are made using freshwater studies. Therefore, we exposed the Inland Silverside (Menidia beryllina) at an early life stage to seven commonly used pesticides at two salinities relevant to estuarine waters (5 PSU and 15 PSU). Triadimefon was the only compound to show a statistically significant increase in toxicity at the 15 PSU LC50. However, all compounds showed a decrease in LC50 values at the higher salinity, and all but one showed a decrease in the LC10 value. Many organisms rely on estuaries as nurseries and increased toxicity at higher salinities may mean that organisms in critical life stages of development are at risk of experiencing adverse, toxic effects. The differences in toxicity demonstrated here have important implications for organisms living within estuarine and marine ecosystems in the Anthropocene as climate change alters estuarine salinity regimes globally.
Project description:Ibuprofen is one of the most commonly detected pharmaceuticals in wastewater effluent; however the effects of ibuprofen on aquatic organisms are poorly understood. This study presents the transcriptome-wide response of the inland silverside, Menidia beryllina, to chronic 14 d exposures to ibuprofen.
Project description:Fishes in estuarine waters are frequently exposed to treated wastewater effluent, among numerous other sources of contaminants, yet the impacts of these anthropogenic chemicals are not well understood in these dynamic and important waterways. Inland silversides (Menidia beryllina) at an early stage of development [12 days posthatch (dph)] were exposed to waters from two estuarine wastewater-treatment outfall locations in a tidal estuary, the Sacramento/San Joaquin Delta (California, USA) that had varied hydrology and input volumes. The genomic response caused by endocrine-disrupting compounds (EDCs) in these waters was determined using quantitative polymerase chain reaction on a suite of hormonally regulated genes. Relative androgenic and estrogenic activities of the waters were measured using CALUX reporter bioassays. The presence of bifenthrin, a pyrethroid pesticide and known EDC, as well as caffeine and the anti-inflammatory pharmaceutical ibuprofen, which were used as markers of wastewater effluent input, were determined using instrumental analysis. Detectable levels of bifenthrin (2.89 ng L(-1)) were found on one of the sampling dates, and caffeine was found on all sampling dates, in water from the Boynton Slough. Neither compound was detected at the Carquinez Strait site, which has a much smaller effluent discharge input volume relative to the receiving water body size compared with Boynton Slough. Water samples from both sites incubated in the CALUX cell line induced estrogenic and androgenic activity in almost all instances, though the estrogenicity was relatively higher than the androgenicity. Changes in the abundance of mRNA transcripts of endocrine-responsive genes and indicators of general chemical stress were observed after a 96-h exposure to waters from both locations. The relative levels of endocrine response, changes in gene transcript abundance, and contaminant concentrations were greater in water from the Boynton Slough site despite those effluents undergoing a more advanced treatment process. The availability of a widely geographically distributed estuarine model species (M. beryllina) now allows for improved assessment of treated effluent impacts across brackish, estuarine, and marine environments.
Project description:Ibuprofen is one of the most commonly detected pharmaceuticals in wastewater effluent; however the effects of ibuprofen on aquatic organisms are poorly understood. This study presents the transcriptome-wide response of the inland silverside, Menidia beryllina, to chronic 14 d exposures to ibuprofen. Twenty-four samples were run on twenty-four arrays, there were six replicates for each of three ibuprofen exposure concentrations and a control group.
Project description:Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions including reproduction. Transcriptomic data and publicly available high throughput toxicity data were utilized to develop putative adverse outcome pathways (AOPs) for molecular initiating event (MIE) of COX inhibition. Effects of a waterborne exposure to indomethacin (IN; 100 µg/L), ibuprofen (IB; 200 µg/L) and celecoxib (CX; 20 µg/L) on liver metabolome and ovarian gene expression (using oligonucleotide microarrays) in sexually mature fathead minnows were examined. Metabolomic profiles of IN, IB and CX were not significantly different from control or one another. Exposure to IB and CX resulted in differential expression of comparable numbers of genes (IB = 433, CX= 545). In contrast, 2558 genes were differentially expressed in IN-treated fish. Functional analyses (canonical pathway and gene set enrichment) indicated extensive effects of IN on prostaglandin synthesis pathway, oocyte meiosis and several other processes consistent with physiological roles of prostaglandins. Transcriptomic data was congruent with apical endpoint data - IN reduced plasma prostaglandin F2 alpha concentrations, and ovarian COX activity, whereas IB and CX did not. Putative AOPs pathways for COX inhibition (MIE) leading to reproductive failure (adverse outcome) via reduction of: 1) ovulation, 2) reproductive behaviors mediated by exogenous and endogenous prostaglandins, and 3) oocyte maturation were developed. Adult fathead minnow were exposed to either 100 µg/L indomethacin, 200 µg/L ibuprofen, 20 µg/L celecoxib or UV-treated Lake Superior (control) water for 96 hours. After exposure, microarray analyses were conducted using the female gonads (n=7-8 per treatment) and metabolomic analyses were conducted using the livers of all the exposed fish.
Project description:Given finite resources, intense investment in one life history trait is expected to reduce investment in others. Although telomere length appears to be strongly tied to age in many taxa, telomere maintenance requires energy. We therefore hypothesize that telomere maintenance may trade off against other life history characters. We used natural variation in laboratory populations of Atlantic silversides (Menidia menidia) to study the relationship between growth, fecundity, life expectancy, and relative telomere length. In keeping with several other studies on fishes, we found no clear dependence of telomere length on age. However, we did find that more fecund fish tended to have both reduced life expectancy and shorter telomeres. This result is consistent with the hypothesis that there is a trade-off between telomere maintenance and reproductive output.