Project description:Homo sapiens fresh whole blood was infected with Candida parapsilosis. RNA-pool of both species extracted at 0min (control), 15, 30, 60, 120, 240 min. Samples are rRNA depleted. Measurement of Homo sapiens gene expression.
Project description:Homo sapiens fresh whole blood was infected with Candida albicans SC5314. RNA-pool of both species extracted at 0min (control), 15, 30, 60, 120, 240 min. Samples are rRNA depleted. Expression measurement of Homo sapiens genes.
Project description:ATAC-seq samples from 2 species and 2 cell types were generated to study cis-regulatory element evolution. Briefly, previously generated urinary stem cell derived iPS-cells (Homo sapiens) of 2 human individuals and fibroblast derived cynomolgus macaque iPSCs (Macaca fascicularis) of 2 individuals (Geuder et al. 2021) were differentiated to neural progenitor cells via dual-SMAD inhibition as three-dimensional aggregation culture (Chambers et al. 2009; Ohnuki et al. 2014). The NPC lines were cultured in NPC proliferation medium and passaged 2 - 4 times until they were dissociated and subjected to ATAC-seq together with the respective iPSC clones. ATAC-seq libraries were generated using the Omni-ATAC protocol (Corces et al. 2017) with minor modifications.
Project description:Homo sapiens fresh whole blood was infected with Candida glabrata. RNA-pool of both species extracted at 0min (control), 15, 30, 60, 120, 240 min. Samples are rRNA depleted. Measurement of Candida glabrata gene expression.
Project description:Homo sapiens fresh whole blood was infected with Candida tropicalis. RNA-pool of both species extracted at 0min (control), 15, 30, 60, 120, 240 min. Samples are rRNA depleted. Measurement of Candida tropicalis gene expression.
Project description:To explore the molecular mechanism underlying glucose regulation by hepatic FTO, we used the human hepatocyte Hep-G2 cell line as an experimental platform and analyzed transcriptome changes following FTO knock-down.
Project description:To explore the molecular mechanism underlying glucose regulation by hepatic FTO, we used the human hepatocyte Hep-G2 cell line as an experimental platform and analyzed transcriptome changes following FTO knock-down.