Project description:Publication Abstract: As climate changes, sea surface temperature anomalies that negatively impact coral reef organisms continue to increase in frequency and intensity. Yet, despite widespread coral mortality, genetic diversity remains high even in those coral species listed as threatened. While this is good news in many ways it presents a challenge for the development of biomarkers that can identify resilient or vulnerable genotypes. Taking advantage of three coral restoration nurseries in Florida that serve as long-term common garden experiments, we exposed over thirty genetically distinct Acropora cervicornis colonies to hot and cold temperature shocks seasonally and measured pooled gene expression responses using RNAseq. Targeting a subset of twenty genes, we designed a high-throughput qPCR array to quantify expression in all individuals separately under each treatment with the goal of identifying predictive and/or diagnostic thermal stress biomarkers. We observed extensive transcriptional variation in the population, suggesting abundant raw material is available for adaptation via natural selection. However, this high variation made it difficult to correlate gene expression changes with colony performance metrics such as growth, mortality, and bleaching susceptibility. Nevertheless, we identified several promising diagnostic biomarkers for acute thermal stress that may improve coral restoration and climate change mitigation efforts in the future.
Project description:This project aims to identify differences in metabolomic profiles among seven known, unique genotypes of the threatened staghorn coral Acropora cervicornis.
Project description:This experiment assessed the natural gene expression variation present between colonies of the Indo-Pacific reef-building coral Acropora millepora, and additionally explored whether gene expression differed between two different intron haplotypes according to intron 4-500 in a carbonic anhydrase homolog. This study found no correspondence between host genotype and transcriptional state, but found significant intercolony variation, detecting 488 representing unique genes or 17% of the total genes analyzed. Such transcriptomic variation could be the basis upon which natural selection can act. Underlying variation could potentially allow reef corals to respond to different environments. Whether this source of variation and the genetic responses of corals and its symbionts will allow coral reefs to cope to the rapid pace of global change remains unknown.