Project description:We assessed the occurrence of endoparasite eggs, cysts, oocysts and larvae in the muskox population of Dovrefjell, Norway, during June and August 2012. This population originates from 13 calves translocated from Eastern Greenland during the 1950s. A total of 167 faecal samples were collected, of which 49% came from identified individuals: 165 were examined by the Baermann and 95 by McMaster techniques and 167 by immunofluorescence antibody test (IFAT). Lungworm larvae recovered in the Baermanns were identified as Protostrongylidae (82%) and Dictyocaulus sp. (76%) based on morphology. Further molecular analyses of the ITS-2 region of two protostrongylid larvae from two muskoxen as Muellerius capillaris. Larval prevalence and intensity differed significantly between samples collected from the different age groups in June and August, with increasing prevalence and intensity in calves during the course of their first summer, whereas intensity decreased in adults from June to August. McMaster test and IFAT were used to determine the occurrence of infections with intestinal strongyles (84%), Moniezia spp. (24%), Nematodirus sp. (2%), Eimeria spp. (98%), Cryptosporidium sp. (14%) and Giardia duodenalis (7%). Molecular analyses of three isolates of Cryptosporidium and Giardia were identified as Cryptosporidium xiaoi and G. duodenalis assemblage A. Although infection intensity of all these intestinal parasites tended to be low, the high level of polyparasitism, together with the other challenges faced by this population living at the edge of their climatic range, means that these infections should not be ignored. The potential that M. capillaris, Cryptosporidium and Giardia infections derive from other sympatric host species (sheep and reindeer) is discussed.
Project description:Co-expression networks and gene regulatory networks (GRNs) are emerging as important tools for predicting the functional roles of individual genes at a system-wide scale. To enable network reconstructions we built a large-scale gene expression atlas comprised of 62,547 mRNAs, 17,862 non-modified proteins, and 6,227 phosphoproteins harboring 31,595 phosphorylation sites quantified across maize development. There was little edge conservation in co-expression and GRNs reconstructed using transcriptome versus proteome data yet networks from either data type were enriched in ontological categories and effective in predicting known regulatory relationships. This integrated gene expression atlas provides a valuable community resource. The networks should facilitate plant biology research and they provide a conceptual framework for future systems biology studies highlighting the importance of studying gene regulation at several levels.