Project description:Administration of G-CSF mobilizes a unique population of CD11b+Ly6C+CD34+mature monocytes that can inhibit GVHD in murine models of BMT via an iNOS-dependent mechanism. The transcriptional profiles of flow sorted lineage-CD11b+CD34+ cells from G-CSF treated mice were compared with conventional splenic Ly6C+ and Ly6C- monocytes, progenitor cells and cultured myeloid-derived suppressor cells. Further comparisons were made with lineage-CD11b+CD34+ cells from G-CSF treated mice that had been grown in culture or that were derived from iNOS ko mice. We used microarrays to detail the global programme of gene expression underlying diffrenetiation of each of these cell types
Project description:Administration of G-CSF mobilizes a unique population of CD11b+Ly6C+CD34+mature monocytes that can inhibit GVHD in murine models of BMT via an iNOS-dependent mechanism. The transcriptional profiles of flow sorted lineage-CD11b+CD34+ cells from G-CSF treated mice were compared with conventional splenic Ly6C+ and Ly6C- monocytes, progenitor cells and cultured myeloid-derived suppressor cells. Further comparisons were made with lineage-CD11b+CD34+ cells from G-CSF treated mice that had been grown in culture or that were derived from iNOS ko mice. We used microarrays to detail the global programme of gene expression underlying diffrenetiation of each of these cell types Lin-CD11b+CD34+ populations were isolated directly from the spleens of G-CSF-treated C57BL/6 mice or iNOS ko mice. In untreated C57BL/6 mice, Lin-CD11b+CD115+Ly6C+ and Lin-CD11b+CD115+Ly6C- monocytes were isolated from the spleen and Lin-CD117+CD115+CD135-Ly6C+CD11b- common monocyte progenitors were isolated from the bone marrow. Myeloid-derived suppressor cells (Ly6C+CD11b+ cells derived from G-CSF, GM-CSF and IL-13 cultured C57BL/6 bone marrow) were also isolated and compared with the above populations. Lin-CD11b+CD34+ spleen cells derived from G-CSF-treated C57BL/6 mice were cultured for 3 days in Flt3 ligand and SCF and then compared to the original input population.
Project description:RATIONALE: Beclomethasone may be an effective treatment for graft-versus-host disease.
PURPOSE: Phase I/II trial to study the effectiveness of beclomethasone in treating patients who have graft-versus-host disease of the esophagus, stomach, small intestine, or colon.
Project description:Allogeneic hematopoietic stem cell transplantation remains the most efficacious treatment for many hematological malignancies. However, its therapeutic potential is affected by the most prominent side effect graft versus host disease. Despite advances in the treatment of graft versus host disease in recent years, morbidity and mortality remains high, which requires the development of new treatment approaches. We therefore implemented mouse models to assess potential treatment options for graft versus host disease. In in vivo experiments, we had observed a protective effect of LCN2 on graft versus host disease of the gastrointestinal tract. We also observed higher numbers of anti-inflammatory macrophages in the intestinal tissues of these animals. Therefore, we aimed to determine potentially regulated genes in these cells by using an in vitro approach of LCN2-treated macrophages.
Project description:The macrolide rapamycin is known for its immunosuppressive properties since it inhibits mTOR (mammalian target of rapamycin), which activity affects differentiation and functions of various innate and adaptive immune cells involved in graft-versus-host disease development. Since rapamycin procures immunosuppressive effects on the immune response, rapamycin is an attractive candidate for graft-versus-host disease prevention after allogeneic bone marrow transplantation. Recently, an activating effect of rapamycin on the function of myeloid-derived suppressor cells (MDSCs), a subset of immune suppressive cells of myeloid origin was reported. However, the effect of rapamycin treatment on MDSCs induction and function in the management of graft-versus-host disease is largely unknown. We used an MHC class I and II mismatched parent into F1 bone marrow transplantation mouse model to elucidate the mechanisms of rapamycin on MDSCs in the context of graft-versus-host disease prevention. To define the impact of rapamycin therapy on MDSCs gene expression profile, we performed mircoarray analysis and compared gene expression profiles of ex vivo isolated MDSCs from rapamycin and PBS treated mice