Project description:Regeneration is one of the key factors affecting downy feather production. However, the signals and molecular controlling the progression of feather regeneration was poorly understood. We used a high density microarray to profile the temporal transcriptome dynamics during the regeneration periods. A total of 3540 genes expressed differentially with significant fold changes during feather regeneration. Cluster analysis revealed event specific dynamic expression of genes related to cell cycling, cell migration, cell proliferation, follicle re-growth and fiber elongation. These clusters involved functional clusters like regulation of actin cytoskeleton, focal adhesion and sphingolipid metabolism, and enriched signaling pathways like Wnt signaling pathway, MAPK pathway and TGFβ signaling pathway. In cell cycling, mainly involved genes were cyclin B3, cyclin Y. In TGFβ signaling pathway, mainly involved genes were TGFβ3, BMP7, NOG and BMP2. While Wnt5a, Wnt10a, FZD2, and FZD10 were involved in canonical Wnt/β-catenin pathway. Our study provides a comprehensive genetic blue print of diverse cellular responses during regeneraton of goose feather. The data provide an initial step towards a better understanding of molecular mechanisms underlying feather regeneration process and also suggest that signals or molecular participated in feather regeneration was quite different from the generation of hair in mammals.
Project description:The feather follicle is a “professional” regenerative organ that undergoes natural cycling and, regeneration after wound plucking. Similar to mammalian hair follicle, dermal papilla (DP) controls feather regeneration, shape, size, and axis. Here we report gene expression profiling for feather DP at different growth stages. For growth phase, we compared gene expression of DP, the ramogenic zone of feather branching epithelium (Erz) and the mesenchymal pulp (Pp). We also compared gene expression of DP at resting phase. To characterize the feather regeneration process, we further profiled gene expression at Day-2 and Day-4 post wound. Our results provide a resource for investigating feather growth and regeneration. Examination of gene expression in dermal papilla (DP) at growth phase and resting phase feather follicle, and during feather regeneration.
Project description:The unique fat storage and metabolic characteristics of goose liver is an important model for studying lipid metabolism in animals or humans. In this study, RNA sequencing technology was used to obtain the liver transcriptome of Sichuan white goose with significant weight difference in the same population, and differentially expressed genes and their pathways were identified, which may help to understand the mechanism of goose weight change. In addition, the identified candidate genes may be useful for molecular breeding of geese.
2020-02-28 | GSE132921 | GEO
Project description:Skin Transcriptome Profile of Gray and White Feather of Goose