Project description:Sex differences in liver gene expression are dictated by sex-differences in circulating growth hormone (GH) profiles. Presently, the pituitary hormone dependence of mouse liver gene expression was investigated on a global scale to discover sex-specific early GH response genes that might contribute to sex-specific regulation of downstream GH targets and to ascertain whether intrinsic sex-differences characterize hepatic responses to plasma GH stimulation. RNA expression analysis using 41,000-feature microarrays revealed two distinct classes of sex-specific mouse liver genes: genes subject to positive regulation (class-I) and genes subject to negative regulation by pituitary hormones (class-II). Genes activated or repressed in hypophysectomized (Hypox) mouse liver within 30-90min of GH pulse treatment at a physiological dose were identified as direct targets of GH action (early response genes). Intrinsic sex-differences in the GH responsiveness of a subset of these early response genes were observed. Notably, 45 male-specific genes, including five encoding transcriptional regulators that may mediate downstream sex-specific transcriptional responses, were rapidly induced by GH (within 30min) in Hypox male but not Hypox female mouse liver. The early GH response genes were enriched in 29 male-specific targets of the transcription factor Mef2, whose activation in hepatic stellate cells is associated with liver fibrosis leading to hepatocellular carcinoma, a male-predominant disease. Thus, the rapid activation by GH pulses of certain sex-specific genes is modulated by intrinsic sex-specific factors, which may be associated with prior hormone exposure (epigenetic mechanisms) or genetic factors that are pituitary-independent, and could contribute to sex-differences in predisposition to liver cancer or other hepatic pathophysiologies.
Project description:Characterization of Directly Regulated Thyroid Hormone Mediated Gene Expression Following Short-Term Perturbations in Thyroid Hormone Levels in Juvenile Mice
Project description:We used microarrays to investigate differential gene expression in different thyroid hormone receptor beta mouse models. Hypothyroid wild type, TRbeta KO and TRbeta GS mutant mice were treated with T3 or vehicle alone. Microarray analysis revealed that the gene expression pattern in TRbeta GS mutant mice was similar to that in TRbeta KO mice.
Project description:NCoR1 (Nuclear receptor Co-Repressor) and SMRT (Silencing Mediator of Retinoid and Thyroid hormone receptor) are well-recognized coregulators of nuclear receptor (NR) action. However, their unique roles in the regulation of thyroid hormone (TH) signaling in specific cell types have not been determined. To accomplish this we generated a mouse model that lacked function of either NCoR1 or SMRT or both in the liver only. Despite both corepressors being present in the liver, SMRT had no ability to regulate TH signaling when deleted in either euthyroid or hypothyroid animals. In contrast, disruption of NCoR1 action confirmed that it is the principal mediator of TH sensitivity in vivo. While SMRT played little role in TH signaling alone, when disrupted in combination with NCoR1 it greatly accentuated the activation of hepatic lipogenesis regulated by NCoR1. Thus, corepressor specificity exists in vivo and NCoR1 is the principal regulator of TH action in the liver. However, both NCoR1 and SMRT collaborate to control hepatic lipogenesis and lipid storage, which likely reflects their cooperative activity in regulating the action of multiple NRs including the thyroid hormone receptor (TR). RNA was extracted from livers from 3 individual mice for each group (Double-floxed, Liver specific-SMRT knock out, and Liver specific-double knock out); all were euthyroid, female mice
Project description:The aim of this study was to assess whether chronic treatment with RPV can modulate the progression of chronic liver disease, especially of non-alcoholic fatty liver disease (NAFLD), through a nutritional model in wild-type mice Mice were daily treated with RPV (p.o.) and fed with normal or high fat diet during 3 months to induce fatty liver disease
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.