Project description:Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in preeclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branchingmorphogenesis.Selective Grhl2 inactivation only in epiblastderived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIPseq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2−/− placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction. In vivo genome-wide examination of binding sites of the transcription factor GRHL2 by ChIP-seq using wild-type murine E17.5 placenta tissue. Two samples in total: one GRHL2 ChIP sample and one IgG ChIP sample using wild-type placentas tissue as antibody control.
Project description:Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in preeclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branchingmorphogenesis.Selective Grhl2 inactivation only in epiblastderived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIPseq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2−/− placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction.
Project description:Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in preeclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branchingmorphogenesis.Selective Grhl2 inactivation only in epiblastderived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIPseq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2−/− placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction.
Project description:Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in pre-eclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branching morphogenesis. Selective Grhl2 inactivation only in epiblast-derived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIP-seq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2(-/-) placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction.
Project description:Branching morphogenesis of the mammary gland is driven by the highly motile terminal end bud (TEB) throughout pubertal development. The stem cell enriched, proliferative TEB branches as it invades the mammary fat pad to create a complex network of ducts. The gene expression programs specific to the TEB and the differentiated duct are poorly understood. We conducted a time course analysis of gene expression in the TEB and duct throughout branching morphogenesis. Additionally, we determined the gene regulatory networks coordinated by the Co-factor of LIM domains (CLIM/LDB) transcriptional regulators and determined an essential function for CLIMs in branching morphogenesis by maintaining basal mammary epithelial stem cells and promoting cell proliferation. We used laser capture microdissection to isolate TEB and duct cells throughout branching morphogenesis. We then profiled gene expression in these cells to determine gene regulatory networks involved in branching morphogenesis, and specifically those regulated by CLIM transcriptional regulators. Mouse mammary glands from 4, 6, 8, and 10 week old mice (early puberty through early adulthood) were used for laser capture microdissection of TEB and duct cells from WT and K14-DN-Clim transgenic mice. RNA was isolated (Qiagen) and hybridized to Affymetrix MouseGene 1.0 ST arrays. In addition, basal (CD29HiCD24+Lin-) and Luminal (CD29LoCD24+Lin-) cells were sorted and RNA collected for hybridization to Affymetrix MouseGene 1.0ST arrays.
Project description:We report that a protein arginine methyltransferase Prmt and symmetric dimethylation at histone H arginine (HRsme) directly associates with chromatin of Bmp to suppress its transcription. Inactivation of Prmt in the lung epithelium results in halted branching morphogenesis, altered P-D airway patterning and neonatal lethality.
Project description:Branching morphogenesis of the mammary gland is driven by the highly motile terminal end bud (TEB) throughout pubertal development. The stem cell enriched, proliferative TEB branches as it invades the mammary fat pad to create a complex network of ducts. The gene expression programs specific to the TEB and the differentiated duct are poorly understood. We conducted a time course analysis of gene expression in the TEB and duct throughout branching morphogenesis. Additionally, we determined the gene regulatory networks coordinated by the Co-factor of LIM domains (CLIM/LDB) transcriptional regulators and determined an essential function for CLIMs in branching morphogenesis by maintaining basal mammary epithelial stem cells and promoting cell proliferation. We used laser capture microdissection to isolate TEB and duct cells throughout branching morphogenesis. We then profiled gene expression in these cells to determine gene regulatory networks involved in branching morphogenesis, and specifically those regulated by CLIM transcriptional regulators.