Project description:Loxostege sticticalis Linnaeus is an economically important agricultural pest, and the larvae cause great damage to crops, especially in Northern China. However, effective and environmentally friendly chemical methods for controlling this pest have not been discovered to date. In the present study, we performed HiSeq2500 sequencing of transcriptomes of the male and female adult antennae, adult legs and third instar larvae, and we identified 54 candidate odorant receptors (ORs), including 1 odorant receptor coreceptor (Orco) and 5 pheromone receptors (PRs), 18 ionotropic receptors (IRs), 13 gustatory receptors (GRs), 34 odorant binding proteins (OBPs), including 1 general odorant binding protein (GOBP1) and 3 pheromone binding proteins (PBPs), 10 chemosensory proteins (CSPs) and 2 sensory neuron membrane proteins (SNMPs). The results of RNA-Seq and RT-qPCR analyses showed the expression levels of most genes in the antennae were higher than that in the legs and larvae. Furthermore, PR4, OR1-4, 7-11, 13-15, 23, 29-32, 34, 41, 43, 47/IR7d.2/GR5b, 45, 7/PBP2-3, GOBP1, OBP3, 8 showed female antennae-biased expression, while PR1/OBP2, 7/IR75d/CSP2 showed male antennae-biased expression. However, IR1, 7d.3, 68a/OBP11, 20-22, 28/CSP9 had larvae enriched expression, and OBP15, 17, 25, 29/CSP5 were mainly expressed in the legs. The results shown above indicated that these genes might play a key role in foraging, seeking mates and host recognition in the L. sticticalis. Our findings will provide the basic knowledge for further studies on the molecular mechanisms of the olfactory system of L. sticticalis and potential novel targets for pest control strategies.
Project description:Odorant binding proteins play a crucial role in transporting semiochemicals across the sensillum lymph to olfactory receptors within the insect antennal sensilla. In this study, the general odorant binding protein 2 gene was cloned from the antennae of Loxostege sticticalis, using reverse transcription PCR and rapid amplification of cDNA ends. Recombinant LstiGOBP2 was expressed in Escherichia coli and purified by Ni ion affinity chromatography. Real-time PCR assays indicated that LstiGOBP2 mRNA is expressed mainly in adult antennae, with expression levels differing with developmental age. Ligand-binding experiments using N-phenyl-naphthylamine (1-NPN) as a fluorescent probe demonstrated that the LstiGOBP2 protein has binding affinity to a broad range of odorants. Most importantly, trans-11-tetradecen-1-yl acetate, the pheromone component of Loxostege sticticalis, and trans-2-hexenal and cis-3-hexen-1-ol, the most abundant plant volatiles in essential oils extracted from host plants, had high binding affinities to LstiGOBP2 and elicited strong electrophysiological responses from the antennae of adults.
Project description:The peritrophic membrane (PM) plays an important role in protecting insects. The PM proteins are important to determinate the formation and function of the PM. A new PM protein, named Lsti99, was identified from the PM of Loxostege sticticalis larvae by cDNA library screening. The full cDNA of Lsti99 is 1392 bp in length, contains an open reading frame (ORF) of 1245 bp that encodes a preprotein of 415 amino acid residues with a 17-amino acid signal peptide. The sequence of Lsti99 showed no homology to other known PM proteins. The recombinant Lsti99 was successfully expressed in insect cells (Sf9) using recombinant baculoviruses and was used to isolate the antibodies to Lsti99 from the polyclonal antiserum. Lsti99 was expressed mainly in the PM, but weaker bands could be detected in the head and integument as well. The Lsti99 protein could be separated from the PM complex by chitinase in vitro, but M2R did not show effect in vitro confirming the chitin-binding activity of Lsti99. The biochemical and physiological functions of Lsti99 in L. sticticalis require further investigation.
Project description:Flight and reproduction are usually considered as two life history traits that compete for resources in a migratory insect. The beet webworm, Loxostege sticticalis L., manages the costs of migratory flight and reproduction through a trade-off in timing of these two life history traits, where migratory behavior occurs during the preoviposition period. To gain insight into how migratory flight and reproduction are coordinated in the female beet webworm, we conducted experiments beginning at the end of the preoviposition period. We used flight mills to test whether flight performance and supportive flight musculature and fuel are affected by the number of eggs oviposited, or by the age of mated and unmated females after onset of oviposition by the former. The results showed that flight distance, flight velocity, flight duration, and flight muscle mass decreased abruptly at the onset of oviposition, compared to that of virgin females of the same age which did not change over the next 7 d. These results indicate that onset of oviposition triggers a decrease in flight performance and capacity in female beet webworms, as a way of actively managing reallocation of resources away from migratory flight and into egg production. In addition to the abrupt switch, there was a gradual, linear decline in flight performance, flight muscle mass, and flight fuel relative to the number of eggs oviposited. The histolysis of flight muscle and decrease of triglyceride content indicate a progressive degradation in the ability of adults to perform additional migratory flights after onset of oviposition. Although the results show that substantial, albeit reduced, long-duration flights remain possible after oviposition begins, additional long-distance migratory flights probably are not launched after the initiation of oviposition.
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.