Project description:The tree-of-heaven root weevil (Eucryptorrhynchus scrobiculatus) and the tree-of-heaven trunk weevil (Eucryptorrhynchus brandti) are closely related species that monophagously feed on the same host plant, the Ailanthus altissima (Mill) Swingle, at different locations. However, the mechanisms of how they select different parts of the host tree are unclear. As chemosensory systems play important roles in host location and oviposition, we screened candidate chemosensory protein genes from the transcriptomes of the two weevils at different developmental stages. In this study, we identified 12 candidate chemosensory proteins (CSPs) of E. scrobiculatus and E. brandti, three EscrCSPs, and one EbraCSPs, respectively, were newly identified. The qRT-PCR results showed that EscrCSP7/8a/9 and EbraCSP7/8/9 were significantly expressed in adult antennae, while EscrCSP8a and EbraCSP8 shared low sequence identity, suggesting that they may respond to different odorant molecule binding. Additionally, EbraCSP6 and EscrCSP6 were mainly expressed in antennae and proboscises and likely participate in the process of chemoreception. The binding simulation of nine volatile compounds of the host plant to EscrCSP8a and EbraCSP8 indicated that (1R)-(+)-alpha-pinene, (-)-beta-caryophyllene, and beta-elemen have higher binding affinities with EscrCSP8a and lower affinities with EbraCSP8. In addition, there were seven, two, and one EbraCSPs mainly expressed in pupae, larvae, and eggs, respectively, indicating possible developmental-related roles in E. brandti. We screened out several olfactory-related possible CSP genes in E. brandti and E. scrobiculatus and simulated the binding model of CSPs with different compounds, providing a basis for explaining the niche differentiation of the two weevils.
Project description:Eucryptorrhynchus scrobiculatus is an important wood-boring pest of Ailanthus altissima in China, where it causes a large number of these trees to weaken or even die. To identify genes related to economic traits or specific cellular processes in E. scrobiculatus, gene expression in multiple tissue/organ samples is commonly surveyed, and reference genes are required in this process as a control for normalization. In the present study, 18 candidate reference genes from E. scrobiculatus were identified, and the expression levels of these reference genes were estimated through quantitative real-time PCR. Differences in expression levels were analyzed with four algorithms (geNorm, NormFinder, BestKeeper and delta Ct) and comprehensively with RefFinder. With the most stable levels of expression in different tissues, RPL13, RPS3 and RPL36 were determined to be suitable for use as candidate reference genes. Moreover, the expression profile of one target gene (glycoside hydrolase family 45, GH45) confirmed the reliability of the selected candidate reference genes. This study provides the first set of suitable candidate reference genes for gene expression studies in E. scrobiculatus, and the findings will facilitate subsequent transcriptomics and functional gene research on this pest.