Project description:BACKGROUND: In patients with suspicious pulmonary lesions, bronchoscopy is frequently non-diagnostic. This often results in additional invasive testing, including surgical biopsy, although many patients have benign disease. We sought to validate an airway gene-expression classifier for lung cancer in patients undergoing diagnostic bronchoscopy. METHODS: Two multicenter prospective studies (AEGIS 1 and 2) enrolled 1357 current or former smokers undergoing bronchoscopy for suspected lung cancer. Bronchial epithelial cells were collected from normal appearing mucosa in the mainstem bronchus during bronchoscopy. Patients without a definitive diagnosis from bronchoscopy were followed for 12 months. A gene-expression classifier was used to assess the risk of lung cancer, and its performance was evaluated. RESULTS: A total of 298 patients from AEGIS 1 and 341 from AEGIS 2 met criteria for analysis. Bronchoscopy was non-diagnostic for cancer in 272 of 639 patients (43%; 95%CI, 39-46%). The gene expression classifier correctly identified 431 of 487 patients with cancer (89% sensitivity; 95%CI, 85-91%), and 72 of 152 patients without cancer (47% specificity; 95%CI, 40-55%). The combination of the classifier and bronchoscopy had a sensitivity of 97% (95%CI, 95-98%), which was independent of size, location, stage, and histological subtype of lung cancer. In patients with an intermediate pre-test risk (10-60%) of lung cancer, the NPV of the classifier was 91% (95%CI 75-98%). CONCLUSIONS: In patients with an intermediate risk of lung cancer and a non-diagnostic bronchoscopy, a gene-expression classification of “low-risk” warrants consideration of a more conservative diagnostic approach that could reduce unnecessary invasive testing in patients with benign disease. 680 CEL files from 639 BEC specimens, 152 benign and 487 malignant samples
Project description:BACKGROUND: In patients with suspicious pulmonary lesions, bronchoscopy is frequently non-diagnostic. This often results in additional invasive testing, including surgical biopsy, although many patients have benign disease. We sought to validate an airway gene-expression classifier for lung cancer in patients undergoing diagnostic bronchoscopy. METHODS: Two multicenter prospective studies (AEGIS 1 and 2) enrolled 1357 current or former smokers undergoing bronchoscopy for suspected lung cancer. Bronchial epithelial cells were collected from normal appearing mucosa in the mainstem bronchus during bronchoscopy. Patients without a definitive diagnosis from bronchoscopy were followed for 12 months. A gene-expression classifier was used to assess the risk of lung cancer, and its performance was evaluated. RESULTS: A total of 298 patients from AEGIS 1 and 341 from AEGIS 2 met criteria for analysis. Bronchoscopy was non-diagnostic for cancer in 272 of 639 patients (43%; 95%CI, 39-46%). The gene expression classifier correctly identified 431 of 487 patients with cancer (89% sensitivity; 95%CI, 85-91%), and 72 of 152 patients without cancer (47% specificity; 95%CI, 40-55%). The combination of the classifier and bronchoscopy had a sensitivity of 97% (95%CI, 95-98%), which was independent of size, location, stage, and histological subtype of lung cancer. In patients with an intermediate pre-test risk (10-60%) of lung cancer, the NPV of the classifier was 91% (95%CI 75-98%). CONCLUSIONS: In patients with an intermediate risk of lung cancer and a non-diagnostic bronchoscopy, a gene-expression classification of “low-risk” warrants consideration of a more conservative diagnostic approach that could reduce unnecessary invasive testing in patients with benign disease.
Project description:Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. This study examines the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n=20), smokers without lung cancer (SNC, n=24), and never smokers (NS, n=8). Functional enrichment showed that the NRF2-mediated antioxidant response pathway differed significantly among these groups. Keywords: Global mRNA expression profiling 21 total arrays (20 unique patients) run on total RNA obtained from Bronchial Epithelium of Smokers with Lung Cancer 30 total arrays (24 unique patients) run on total RNA obtained from Bronchial Epithelium of Smokers without Lung Cancer 9 total arrays (8 unique patients) run on total RNA obtained from Bronchial Epithelium of Never Smokers
Project description:RNA was obtained from histologically normal bronchial epithelium of smokers during time of clinical bronchoscopy from relatively accessible airway tissue. Gene expression data from smokers with lung cancer was compared with samples from smokers without lung cancer. This allowed us to generate a diagnostic gene expression profile that could distinguish the two classes. This profile could provide additional clinical benefit in diagnosing cancer amongst smokers with suspect lung cancer. Keywords: Disease state analysis
Project description:Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. This study examines the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n=20), smokers without lung cancer (SNC, n=24), and never smokers (NS, n=8). Functional enrichment showed that the NRF2-mediated antioxidant response pathway differed significantly among these groups. Keywords: Global mRNA expression profiling
Project description:mRNA expression was profiled from pooled bronchial airway epithelial cell brushings (n=3 patients/pool) obtained during bronchoscopy from healthy never (NS) and current smokers (S) and smokers with (C) and without (NC) lung cancer 4 samples were sequened, each representing a pool of 3 patients. The phenotypes of the 4 samples were as follows: healthy non-smoker, healthy smoker, smoker without lung cancer and smoker with lung cancer.
Project description:Cytologically normal airway epithelial samples were collected during bronchoscopy of current and former smokers. Subjects enrolled in this study were either under suspicion of having lung cancer, had dysplasia in their airway, or were a healthy current, former or never smoker. We supplemented existing GEO series (GSE4115 and GSE7895) with the samples in this study to explore PI3K pathway activity in the these cohorts. This study contains: 2 arrays from smokers with COPD (no lung cancer), 1 array from smoker without COPD (no lung cancer); 2 samples from patients with lung cancer, 2 samples from patients without lung cancer; 20 samples from 10 matched individuals with airway dysplasia before and after treatment with myo-inositol, 6 additional samples from individuals with airway dysplasia; 27 samples from mammary epithelial cells used in oncogenic pathway analysis that have either the PI3K pathway activated, the Np63 pathway activated, or are a GFP control.
Project description:mRNA expression was profiled from pooled bronchial airway epithelial cell brushings (n=3 patients/pool) obtained during bronchoscopy from healthy never (NS) and current smokers (S) and smokers with (C) and without (NC) lung cancer
Project description:Introduction: Lung cancer screening by computed tomography (CT) reduces mortality but exhibited high false-positive rates. We established a diagnostic classifier combining chest CT features with bronchial genomics. Materials and Methods: Patients with CT-detected suspected lung cancer were enrolled. The sample collected by bronchial brushing was used for RNA sequencing. R software was applied to build the model. Results: A total of 283 patients, including 183 with lung cancer and 100 with benign lesions, were included. When incorporating genomic data with radiological characteristics, the advanced model yielded 0.903 AUC with 81.1% NPV. Moreover, the classifier performed well regardless of lesion size, location, stage, histologic type, or smoking status. Pathway analysis showed enhanced epithelial differentiation, tumor metastasis, and impaired immunity were predominant in smokers with cancer, whereas tumorigenesis played a central role in non-smokers with cancer. Apoptosis and oxidative stress contributed critically in metastatic lung cancer; by contrast, immune dysfunction was pivotal in locally advanced lung cancer. Conclusions: We devised a minimal-to-noninvasive, efficient diagnostic classifier for smokers and non-smokers with lung cancer, which provides evidence for different mechanisms of cancer development and metastasis associated with smoking. A negative classifier result will help the physician make conservative diagnostic decisions.
Project description:Individuals who present with premalignant endobronchial lesions are considered at high risk of lung cancer. Nonetheless, premalignant lesions behave erratically and only a minority progresses towards lung cancer. Therefore, biomarkers need to be discovered that can aid in assessing an individual’s risk for subsequent cancer to better tailor treatment choices and avoid unnecessary follow-up procedures. We recently proposed a classifier of DNA copy number alterations (CNAs) at 3p26.3-p11.1, 3q26.2-29, and 6p25.3-24.3 as risk predictor for endobronchial cancer. The current study was set out to validate the classifier among an independent series of premalignant endobronchial lesions with various histological grades. A series of 36 endobronchial premalignant lesions (8 squamous metaplasia, and 28 various grades of dysplasia) identified during autofluorescence bronchoscopy of 12 case subjects who had carcinoma in situ or carcinoma (≥CIS) during follow-up bronchoscopy at the initial site and 24 control subjects who remained cancer-free, was subjected to array Comparative Genomic Hybridization (arrayCGH). DNA copy number profiles were related to lesion outcome. Prediction accuracy of the previously defined molecular classifier to predict endobronchial cancer in this series was determined. Unsupervised hierarchical clustering analysis revealed a significant association between cluster assignment and lesion outcome (p< 0.001), independent of histological grade, with quiescent profiles in controls (24/24) and aberrant profiles in the majority of cases (9/12). Our pre-defined classifier demonstrated 92% accuracy for predicting cancer outcome in the current sample series. Our validated classifier holds great promise for stratification of patients with premalignant endobronchial lesions for risk of subsequent cancer. Fresh frozen specimens of 36 premalignant endobronchial biopsies. Test samples were compared to an external pool of normal male/female reference DNA.