Project description:The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we have described the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins following cytomegalovirus (CMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hypermethylation. Genome-wide DNA methylation patterns were strikingly similar between CMV-associated adaptive NK cells and cytotoxic effector T cells, but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets.
2015-03-06 | GSE66563 | GEO
Project description:Epigenetic and transcriptional characterisation of CMV driven diversification of NK cells
Project description:The mechanisms underlying human NK cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins following cytomegalovirus (CMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hypermethylation. Intriguingly, geneome-wide analyses revealed patterns of DNA methylation that were strikingly similar between CMV-associated adaptive NK cells and cytotoxic effector CD8+ T cells, but differed from those of canonical NK cells.
Project description:The mechanisms underlying human NK cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins following cytomegalovirus (CMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hypermethylation. Intriguingly, geneome-wide analyses revealed patterns of DNA methylation that were strikingly similar between CMV-associated adaptive NK cells and cytotoxic effector CD8+ T cells, but differed from those of canonical NK cells. A total of 23 samples were analyzed (4 sorted NK cell subsets and 2 sorted T cell subsets each from 4 individual donors). In one donor only 5 subsets were analyzed. Bisulfite-converted genomic DNA was hybridized to the Illumina Human Methylation450 BeadChip
Project description:Epigenetic landscapes can provide insight into regulation of gene expression and cellular diversity. Here, we examined the transcriptional and epigenetic profiles of seven human blood NK cell populations, including adaptive NK cells. The BCL11B gene, encoding a transcription factor (TF) essential for T cell development and function, was the most extensively regulated, with expression increasing throughout NK cell differentiation. Several Bcl11b-regulated genes associated with T cell-signaling were specifically expressed in adaptive NK cell subsets. Regulatory networks revealed reciprocal regulation at distinct stages of NK cell differentiation, with Bcl11b repressing RUNX2 and ZBTB16 in canonical and adaptive NK cells, respectively. A critical role for Bcl11b in driving NK cell differentiation was corroborated in BCL11B mutated patients and by ectopic Bcl11b expression. Moreover, Bcl11b was required for adaptive NK cell responses in a murine CMV model, supporting expansion of these cells. Together, we define the TF regulatory circuitry of human NK cells and uncover a critical role for Bcl11b in promoting NK cell differentiation and function.
Project description:Previous research on adaptive NK cells in rhesus macaques suffered from the lack of specific antibodies to differentiate between inhibitory CD94/NKG2A and stimulatory CD94/NKG2C heterodimeric receptors. Recently we reported an expansion of NKG2C receptor-encoding genes in rhesus macaques, but their expression and functional role on primary NK cells remained unknown due to this deficit. Thus, we established monoclonal antibodies 4A8 and 7B1 which show identical specificities and bind to both NKG2C-1 and NKG2C-2 but neither react with NKG2C-3 nor NKG2A on transfected cell lines. Using a combination of 4A8 and Z199 antibodies in multicolor flow cytometry we detected broad expression (4-73%) of NKG2C-1 and/or NKG2C-2 (NKG2C-1/2) on primary NK cells in rhesus macaques from our breeding colony. Stratifying our data to CMV-positive and CMV-negative animals, we noticed a higher proportion (23-73%) in primary NK cells expressing NKG2C-1/2 in CMV+ as compared to CMV- macaques (4-5%). These NKG2C-1/2-positive NK cells in CMV+ macaques are characterized by lower expression of IL12RB2, ZBTB16 and SH2D1B as well as high expression of IFN-gamma, indicating that antibody 4A8 detects CMV-associated adaptive NK cells. Single cell RNA seq data of 4A8-positive NK cells from a CMV-positive individual demonstrated that a high proportion of these adaptive NK cells transcribe in addition to NKG2C-1/2 also NKG2C-3, but interestingly NKG2A as well. Remarkably, NKG2C-1 and in particular NKG2C-2 have a higher affinity to Mamu-E as compared to NKG2A. Primary NK cells exposed to Mamu-E-expressing target cells displayed strong degranulation as well as IFN-gamma expression of 4A8+ adaptive NK cells of rhCMV+ animals that was not evident in rhCMV- animals. Thus, despite co-expression of inhibitory and stimulatory CD94/NKG2 receptors the higher number of different stimulatory NKG2C receptors and their higher binding avidity to Mamu-E outreach inhibitory signaling via NKG2A. These data demonstrate the evolutionary conservation of the CMV-driven development of NKG2C-positive adaptive NK cells with particular molecular signatures in primates and with changes in gene copy numbers and regulation and in ligand binding strength of NKG2C isotypes. Thus, rhesus macaques represent a suitable and valuable nonhuman primate animal model to study the CMV-NKG2C liaison in vivo.
Project description:Clonal expansion and immunological memory are hallmark features of the mammalian adaptive immune response and essential for prolonged host control of pathogens. Recent work demonstrated that natural killer (NK) cells of the innate immune system also exhibit these adaptive traits during infection. Here we demonstrate that differentiating and ‘memory’ NK cells possess distinct chromatin accessibility states, and that their epigenetic profiles reveal a ‘poised’ regulatory program at the memory stage. Furthermore, we elucidate how individual STAT proteins differentially control epigenetic and transcriptional states early during infection. Finally, concurrent chromatin profiling of the canonical CD8+ T cell response against the same infection demonstrated parallel and distinct epigenetic signatures defining NK cells and CD8+ T cells. Overall, our study reveals the dynamic nature of epigenetic imprinting during the generation of innate and adaptive lymphocyte memory.
Project description:Natural Killer (NK) cells are innate cytotoxic lymphocytes with adaptive immune features, including antigen-specificity, clonal expansion, and memory. As such, NK cells share many transcriptional and epigenetic programs with their adaptive CD8+ T cell siblings. Various signals ranging from antigen, co-stimulation, and proinflammatory cytokines are required for optimal NK cell responses in mice and humans during virus infection; however, the integration of these signals remains unclear. In this study, we identified the transcription factor IRF4 as a signal integrator to coordinate the NK cell response during viral infection. Loss of IRF4 was detrimental to the expansion and differentiation of virus-specific NK cells. This defect was partially attributed to the inability of IRF4-deficient NK cells to uptake nutrients required for survival and memory generation. Altogether, these data suggest IRF4 is a signal integrator that acts as a secondary metabolic checkpoint to orchestrate the adaptive response of NK cells during viral infection.
Project description:Natural Killer (NK) cells are innate cytotoxic lymphocytes with adaptive immune features, including antigen-specificity, clonal expansion, and memory. As such, NK cells share many transcriptional and epigenetic programs with their adaptive CD8+ T cell siblings. Various signals ranging from antigen, co-stimulation, and proinflammatory cytokines are required for optimal NK cell responses in mice and humans during virus infection; however, the integration of these signals remains unclear. In this study, we identified the transcription factor IRF4 as a signal integrator to coordinate the NK cell response during viral infection. Loss of IRF4 was detrimental to the expansion and differentiation of virus-specific NK cells. This defect was partially attributed to the inability of IRF4-deficient NK cells to uptake nutrients required for survival and memory generation. Altogether, these data suggest IRF4 is a signal integrator that acts as a secondary metabolic checkpoint to orchestrate the adaptive response of NK cells during viral infection.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.