Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:The heat shock response is critical for organisms to survive at a high temperature. Heterologous expression of eukaryotic molecular chaperons protects Escherichia coli against heat stress. Here we report that expression of the plant E3 ligase BnTR1 significantly increase the thermotolerance of Escherichia coli. Different from eukaryotic chaperones, BnTR1 post-transcriptionally regulates the heat shock factor σ32 though zinc fingers of the RING domain, which interacts with DnaK resulting in stabilizing σ32 and subsequently up-regulating heat shock proteins. Our findings indicate the expression of BnTR1 confers thermoprotective effects on E. coli cells, and it may provide useful clues to engineer thermophilic bacterial strains.
Project description:In order to understand the impact of genetic variants on transcription and ultimately in changes in observed phenotypes we have measured transcript levels in an Escherichia coli strains collection, for which genetic and phenotypic data has also been measured.
Project description:DegP (HtrA: High Temperature Requirement A) is a periplasmic protease with minor chaperone activity that plays a key role in the quality control of protein folding in the envelope of Escherichia coli. Periplasmic and outer membrane proteins that fail to fold in the periplasm can be proteolysed, while others are chaperoned to their native folded state by DegP. In a ΔdegP strain, E. coli is unable to survive the protein folding stress induced at 42º C. Utilizing this phenotype, we developed a plasmid-based selection of suppression of heat-induced lethality in a ΔdegP strain. Plasmid libraries of various prokaryotic genomes were screened for proteins that overcame heat-induced lethality. We identified FevR, a putative transcription factor from Citrobacter amalonaticus having close homologs in environmental E. coli capable of overcoming envelope stress. Through genetic characterization, FevR is shown to induce expression of a periplasmic chaperone-proline isomerase fkpA. Over-expression of FkpA alone is sufficient to suppress heat-induced lethality of a ΔdegP strain. This study demonstrates the use of genetic selections to uncover the hidden potential of E. coli to improve its protein folding capacity.
Project description:Heat-responsive and time-resolved changes in transcriptome of E. coli BL21(DE3) Experimentally mapped transcriptome structure of Escherichia coli BL21(DE3) by hybridizing total RNA (including RNA species <200 nt) to genome-wide high-density tiling arrays (60 mer probes tiled every 10 nt).