Project description:The aim of this study was to analyze the gene expression profile and the mechanism of lipid metabolism in fat-1 transgenic cattle, and accumulate important basic data required to obtain more efficient fat-1 transgenic cattle. Using data obtained from microarray analysis, transcriptome profiling of fat-1 transgenic and wild type cattle identified differentially expressed genes involved in 90 biological pathways, eight of which were related to lipid metabolism processes, which included 36 genes related to lipid metabolism. This analysis also identified 11 significantly enriched genes that were involved in the peroxisome proliferator-activated receptor signaling pathway. These findings were verified by quantitative polymerase chain reaction. The information obtained in this study indicated that the introduction of an exogenous fat-1 gene into cattle affects the gene expression profile and the process of lipid metabolism in these animals.
Project description:The Gayal (Bos frontalis) is a rare semi-domesticated cattle in China. Gayal has typical beef body shape and good meat production performance. Compared with other cattle species, it has the characteristics of tender meat and extremely low fat content. To explore the underlying mechanism responsible for the differences of meat quality between different breeds, the longissimus dorsi muscle (LM) from Gayal and Banna cattle (Bos taurus) were investigated using transcriptome analysis. The gene expression profiling identified 638 differentially expressed genes (DEGs) between LM muscles from Gayal and Banna cattle. Gene Ontology (GO) enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene products were mainly involved in the PPAR signaling pathway, lipid metabolism and amino acid metabolism pathway. Protein-protein interaction(PPI) network analysis showed APOB, CYP7A1, THBS2, ITGAV, IGFBP1 and IGF2R may have great impact on meat quality characteristics of Gayal. Moreover, three transcription factors, FOXA2, NEUROG2, and RUNX1, which may affect meat quality by regulating the expression of genes related to muscle growth and development have also been found. In summary, our research reveals the molecular mechanisms that cause Gayal meat quality characteristics. It will contribute to improving meat quality of cattle through molecular breeding.
Project description:The intramuscular fat (IMF) content of different beef cattle breeds varies greatly, which plays an important role in taste and nutritional value. However, the molecular mechanism of fat metabolism and deposition in beef cattle is still not very clear. In this study, the meat quality traits of Angus cattle and Chinese Simmental cattle were compared, the transcriptome of the longissimus dorsi muscle (LD) between Angus cattle and Chinese Simmental cattle was then analyzed to identify key genes related to fat metabolism and adipogenesis by high-throughput RNA-seq technology. In the current study conducted a comprehensive analysis on the transcriptome of the longissimus dorsi muscle (LD) of Angus and Simmental cattle, and identified differentially expressed genes related to lipid metabolism,which may have a great impact on on the formation of IMF.
Project description:To identify transcriptional markers for beef traits related to meat tenderness and moisture, we measured the transcriptome of the Longissimus dorsi skeletal muscle in 10 Korean native cattle (KNC). We analyzed the correlation between the beef transcriptome and measurements of four different beef traits, shear force (SF), water holding capacity (WHC), cooking loss (CL), and loin eye area (LEA). We obtained non-overlapping and unique panels of genes showing strong correlations (|r| > 0.8) with SF, WHC, CL, and LEA, respectively. Functional studies of these genes indicated that SF was mainly related to energy metabolism, and LEA to rRNA processing. Interestingly, our data suggested that WHC is influenced by protein metabolism. Overall, the skeletal muscle transcriptome pointed to the importance of energy and protein metabolism in determining meat quality after the aging process. The panels of transcripts for beef traits may be useful for predicting meat tenderness and moisture. Experiment Overall Design: Gene expression profiles were correlated with beef traits measured at the same cattle.
Project description:Analysis of hepatic transcript profile and plasma lipid profile in early lactating dairy cows fed grape seed and grape marc meal extract
Project description:We hypothesized that the relative abundances of host cell transcripts in lymph nodes of animals with malignant catarrhal fever (MCF), compared to healthy controls, may be used to identify pathways that may help to explain the pathogenesis of MCF. Therefore, an abundance of host cell gene expression patterns in lymph nodes of animals with MCF and healthy controls were analyzed by microarray. Indeed, a vast number of genes related to inflammatory processes, lymphocyte activation, cell proliferation and apoptosis were detected at different abundances. However, the IL-2 transcript was eminent among the transcripts, which were, compared to healthy controls, less abundant in animals with MCF. Compared to healthy cattle, bovines with MCF appear to mimic an IL-2 knockout phenotype that has been described in mice. This supports the hypothesis that immunopathogenic events are linked to the pathogenesis of MCF. IL-2-deficiency may play an important role in the process. Keywords: disease state analysis
Project description:Transcriptome analysis of mRNA and microRNAs of the intramuscular fat tissues from castrated and intact male Chinese Qinchuan cattle
Project description:Comparative analysis of Musculus longissimus dorsi expression of Holstein x Charolais F2 cattle (SEGFAM) with high and low intramuscular fat (IMF) content