Project description:RSC is a growth essential ATP-dependent chromatin-remodeling complex of Saccharomyces cerevisiae. Nps1/Sth1 is the ATPase subunit of the complex. A temperature-sensitive mutant allele of NPS1, nps1-13 and the null mutation of the RSC2 or RSC7 gene showed growth defect on a medium containing non fermentable carbon source, such as lactate or ethanol-glycerol (YPEG), suggested a possibility that RSC plays a role on mitochondria function. We used microarrays to compare the global gene expression profiles between the wild type and nps1-13 mutant under respiratory condition. WT (BY4743) and nps1-13 strains pre-grown in YPD medium were inoculated in YPEG medium for RNA extraction and hybridization on Affymetrix microarrays. In order to obtain more global insights into the role of RSC under respiratory conditions, we perfomed the genome-wide expression analysis of nps1-13 in YPEG medium.
Project description:RSC (Remodels the Structure of Chromatin) is a conserved ATP-dependent chromatin remodeling complex that regulates many biological processes, including transcription by RNA polymerase II (Pol II). We report that not only RSC binds to nucleosomes in coding sequences (CDSs) but also remodels them to promote transcription. RSC MNase ChIP-seq data revealed that RSC-protected fragments were very heterogenous (~80 bp to 180 bp) compared to the sharper profile displayed by the MNase inputs (140 bp to 160 bp), supporting the idea that RSC activity promotes accessibility of nucleosomal DNA. Importantly, RSC binding to +1 nucleosomes and CDSs, but not with -1 nucleosomes, strongly correlated with Pol II occupancies suggesting that the RSC enrichment in CDSs is important for efficient transcription. This is further supported by a similar heterogenous distribution of Pol II-protected fragments. As such, the genes harboring high-levels of RSC in their CDSs were the most strongly affected by ablating RSC function. Altogether, this study provides a mechanism by which RSC-mediated remodeling aids in RNA Pol II traversal though coding sequence nucleosomes in vivo.
Project description:RSC is a growth essential ATP-dependent chromatin-remodeling complex of Saccharomyces cerevisiae. Nps1/Sth1 is the ATPase subunit of the complex. A temperature-sensitive mutant allele of NPS1, nps1-13 and the null mutation of the RSC2 or RSC7 gene showed growth defect on a medium containing non fermentable carbon source, such as lactate or ethanol-glycerol (YPEG), suggested a possibility that RSC plays a role on mitochondria function. We used microarrays to compare the global gene expression profiles between the wild type and nps1-13 mutant under respiratory condition.
Project description:RSC (remodels the structure of chromatin) is an essential ATP-dependent chromatin remodeling complex in Saccharomyces cerevisiae. The catalytic subunit of RSC, Sth1 uses its ATPase activity to slide or remove nucleosomes. RSC has been shown to regulate the width of the nucleosome-depleted regions (NDRs) by sliding the flanking nucleosomes away from NDRs. As such the nucleosomes encroach NDRs when RSC is depleted and leads to transcription initiation defects. In this study, we examined the effects of the catalytic-dead Sth1 on transcription and compared them to the effects observed during acute and rapid Sth1 depletion by auxin-induced degron strategy. We found that rapid depletion of Sth1 reduces recruitment of TBP and Pol II in highly transcribed genes, as would be expected considering its role in regulating chromatin structure at promoters. In contrast, cells harboring the catalytic-dead Sth1 exhibited a severe reduction in TBP binding, but surprisingly, also displayed a substantial accumulation in Pol II occupancies within coding regions. After depleting endogenous Sth1 in the catalytic dead mutant, we observed a further increase in Pol II occupancies, suggesting that the inactive Sth1 contributed to the observed accumulation of Pol II in coding regions. Notwithstanding the Pol II increase, the ORF occupancies of histone chaperones FACT and Spt6 were significantly reduced in the mutant. These results suggest a potential role for RSC in recruiting/retaining these chaperones in coding regions. Pol II accumulation despite substantial reductions in TBP, FACT, and Spt6 occupancies in the catalytic-dead mutant could be indicative of severe transcription elongation and termination defects. Such defects would be consistent with studies showing that RSC is recruited to coding regions in a transcription-dependent manner. Thus, these findings imply a role for RSC in transcription elongation and termination processes, in addition to its established role in transcription initiation.
Project description:The ring-like cohesin complex plays an essential role in chromosome segregation, organization, and double-strand break repair through its ability to bring two DNA double helices together. Scc2 (NIPBL in humans) together with Scc4 function as the loader of cohesin onto chromosomes. Chromatin adapters such as the RSC complex facilitate localization of the Scc2-Scc4 cohesin loader. Here we identify a broad range of Scc2- chromatin protein interactions that are evolutionarily conserved and reveal a role for one complex, Mediator, in recruitment of the cohesin loader. We identified budding yeast Med14, a subunit of the Mediator complex, as a high copy suppressor of poor growth in Scc2 mutant strains. Physical and genetic interactions between Scc2 and Mediator are functionally substantiated in direct recruitment and cohesion assays. Depletion of Med14 results in defective sister chromatid cohesion and decreased binding of Scc2 at RNA Pol II transcribed genes. Previous work has suggested that Mediator, Nipbl, and cohesin connect enhancers and promoters of active mammalian genes. Our studies suggest an evolutionarily conserved fundamental role for Mediator in direct recruitment of Scc2 to RNA pol II transcribed genes. We identified two mutations in the evolutionarily conserved HEAT domain of SCC2 that result in significantly reduced growth, scc2R787G and scc2G1242V. This experiment uses ChIP Seq to examine global localization of Scc2 in the presence or absence of MED14.