ABSTRACT: Intrinsic RNA-Binding Preferences of Eukaryotic Translation Initiation Factor eIF4G Contribute to Competitive Discrimination of Different mRNAs
Project description:Translational control of gene expression plays essential roles in cellular stress responses and organismal development by enabling rapid, selective, and localized control of protein production. Translational regulation depends on context-dependent differences in the protein output of mRNAs, but the key mRNA features that distinguish efficiently translated mRNAs are largely unknown. Here we comprehensively determined the RNA-binding preferences of the initiation factor eIF4G to assess whether this core translation initiation factor has intrinsic sequence preferences that contribute to preferential translation of specific mRNAs.
Project description:Translation initiation factor 4G (eIF4G) is an integral component of the eIF4F complex which is key to translation initiation for most eukaryotic mRNAs. Many eIF4G isoforms have been described in diverse eukaryotic organisms but we currently have a poor understanding of their functional roles and whether they regulate translation in an mRNA specific manner. The yeast Saccharomyces cerevisiae expresses two eIF4G isoforms, eIF4G1 and eIF4G2, that have previously been considered as functionally redundant with any phenotypic differences arising due to alteration in eIF4G expression levels. Using homogenic strains that express eIF4G1 or eIF4G2 as the sole eIF4G isoforms at comparable expression levels to total eIF4G, we show that eIF4G1 is specifically required to mediate the translational response to oxidative stress. We use quantitative proteomics to show that eIF4G1 promotes oxidative stress-specific proteome changes.
Project description:Gene expression in pathogenic protozoans of the family Trypanosomatidae has several novel features, for example in protein synthesis there are multiple eIF4F-like complexes. The eukaryotic eIF4F complex, formed by the eIF4E, eIF4G and eIF4A subunits, is responsible for the canonical selection of mRNAs required for the initiation of mRNA translation. The best-known complexes implicated in translation in trypanosomatids are based on two related pairs of eIF4E and eIF4G subunits (EIF4E3/EIF4G4 and EIF4E4/EIF4G3), whose functional distinctions have yet to be properly identified. Here, to define the interactome associated with both complexes in Trypanosoma brucei procyclic forms, we performed parallel immunoprecipitation experiments followed by identification of proteins co-precipitated with the two sets of tagged eIF4E and eIF4G subunits. A number of different protein partners, including RBPs and RNA helicases, were found to specifically co-precipitate with each complex. Highlights with the EIF4E4/EIF4G3 pair include RBP23, PABP1, EIF4AI and the CRK1 kinase. Co-precipitated partners with the EIF4E3/EIF4G4 pair are more diverse and include DRBD2, PABP2 and different zinc-finger proteins and RNA helicases.EIF4E3/EIF4G4 are known to be essential for viability and to better define their role.
Project description:Reducing protein synthesis slows growth and development but can increase adult lifespan. We demonstrate that knock-down of eukaryotic translation initiation factor 4G (eIF4G), which is down-regulated during starvation, results in differential translation of genes important for growth and longevity in C. elegans. Genome-wide mRNA translation state analysis showed that inhibition of IFG-1, the C. elegans ortholog of eIF4G, results in a relative increase in ribosomal loading and translation of stress response genes. Some of these genes are required for lifespan extension when IFG-1 is inhibited and are new determinants of longevity. Furthermore, enhanced ribosomal loading of certain mRNAs upon IFG-1 inhibition was correlated with increased mRNA length. This association was supported by changes in the proteome assayed via quantitative mass spectrometry. Our results support a role for IFG-1 in mediating the antagonistic effects on growth and somatic maintenance by modulating translation of a specific class of mRNA based on transcript length.
Project description:Translation initiation in eukaryotes is multi-step pathway and the most regulated phase of translation. Eukaryotic initiation factor 3 is the largest and most complex of the translation initiation factors, and it contributes to events throughout the initiation pathway. In particular, eIF3 appears to play critical roles in mRNA recruitment. More recently, eIF3 has been implicated in driving the selective translation of specific classes of mRNAs. However, unraveling the mechanism of these diverse contributions — and disentangling the roles of the individual subunits of the eIF3 complex — remains challenging. We employed ribosome profiling of budding yeast cells expressing two distinct mutations targeting the eIF3 complex. These mutations either disrupt the entire complex or subunits positioned near the mRNA-entry channel of the ribosome which appear to relocate during or in response to mRNA binding and start-codon recognition. Disruption of either the entire eIF3 complex or specific targeting of these subunits affects mRNAs with long 5’-untranslated regions and whose translation is more dependent on eIF4A, eIF4B, and Ded1 but less dependent on eIF4G, eIF4E, and PABP. Disruption of the entire eIF3 complex further affects mRNAs involved in mitochondrial processes and with structured 5’-untranslated regions. Comparison of the suite of mRNAs most sensitive to both mutations with those uniquely sensitive to disruption of the entire complex sheds new light on the specific roles of individual subunits of the eIF3 complex.
Project description:Eukaryotic translation initiation factor 4E (eIF4E)–binding protein 1 (4E-BP1) inhibits cap-dependent translation in eukaryotes by competing with eIF4G for an interaction with eIF4E. Phos-phorylation at Ser-83 of 4E-BP1 occurs during mitosis through the activity of cyclin-dependent kinase 1 (CDK1)/cyclin B rather than through canonical mTOR kinase activity. Here, we investi-gated the interaction of eIF4E with 4E-BP1 or eIF4G during interphase and mitosis. We observed that 4E-BP1 and eIF4G bind eIF4E at similar levels during interphase and mitosis. The most highly phosphorylated mitotic 4E-BP1 isoform (δ) did not interact with eIF4E, whereas a distinct 4E-BP1 phospho-isoform, EB-γ—phosphorylated at Thr-70, Ser-83, and Ser-101—bound to eIF4E during mitosis. Two-dimensional gel electropho-retic analysis corroborated the identity of the phosphorylation marks on the eIF4E-bound 4E-BP1 isoforms and uncovered a population of phosphorylated 4E-BP1 molecules lacking Thr-37/Thr-46–priming phosphorylation. Moreover, proximity ligation assays for phospho–4E-BP1 and eIF4E revealed different in situ interactions during interphase and mitosis. The eIF4E:eIF4G interaction was not inhibited, but rather increased in mitotic cells, consistent with active translation initiation during mitosis. Phospho-defective substitution of 4E-BP1 at Ser-83 did not change global translation or individual mRNA translation profiles as measured by single-cell nascent protein synthesis and eIF4G RNA-immunoprecipitation sequencing. Mitotic 5’-terminal oligopyrimidine RNA translation was active and, unlike interphase translation, resistant to mTOR inhibition. Our findings reveal the phosphorylation profiles of 4E-BP1 isoforms and their interactions with eIF4E throughout the cell cycle and indicate that 4E-BP1 does not specifically inhibit translation initiation during mitosis.
Project description:Translation factors eIF4E and eIF4G form eIF4F, which binds to mRNAs to promote ribosome recruitment and translation initiation. We were interested in analysing the effects of stresses on eIF4F interactions with individual mRNAs. We used a RIP-seq approach to assess how mRNA associations with eIF4E, eIF4G1 and eIF4G2 change in response to three stresses: 1) addition of hydrogen peroxide; 2) amino acids withdrawal; and, 3) glucose withdrawal. We find that acute stress leads to changes in eIF4FmRNA interactions that are shared among each factor and across the stresses imposed.
Project description:Translation is a fundamental step in gene expression that regulates multiple developmental and stress responses. One key step of translation is the association between eIF4E and eIF4G. This process is regulated in different eukaryotes by proteins which bind to eIF4E and block the formation of the eIF4E/eIF4G complex. Here, we report the discovery of CERES, the first functional eIF4E regulator described in plants. CERES is a modular protein that contains a LRR domain and a canonical eIF4E binding site (4E-BS), critical for CERES interaction with eIF4E in planta. CERES/eIF4E interaction excludes eIF4G from the complex. Despite this observation, CERES promotes translation in vivo interacts with eIF4A and with eIF3 in vivo and cosediments with translation initiation complexes in sucrose gradients. Moreover, ceres mutants display a sharp increase of the 80S peak and a reduction of polysome content at specific periods of the diel cycle. Super-resolution ribosome profiling demonstrates that these mutants show a change of translation efficiency of mRNAs related to light response and glucose management. Consistently, these mutants show a hypersensitive response to glucose. These data show that CERES is a “non canonical” translation initiation factor that, through the formation of alternative translation initiation complexes, modulates translation during the light cycle in plants.
Project description:Reducing protein synthesis slows growth and development but can increase adult lifespan. We demonstrate that knock-down of eukaryotic translation initiation factor 4G (eIF4G), which is down-regulated during starvation, results in differential translation of genes important for growth and longevity in C. elegans. Genome-wide mRNA translation state analysis showed that inhibition of IFG-1, the C. elegans ortholog of eIF4G, results in a relative increase in ribosomal loading and translation of stress response genes. Some of these genes are required for lifespan extension when IFG-1 is inhibited and are new determinants of longevity. Furthermore, enhanced ribosomal loading of certain mRNAs upon IFG-1 inhibition was correlated with increased mRNA length. This association was supported by changes in the proteome assayed via quantitative mass spectrometry. Our results support a role for IFG-1 in mediating the antagonistic effects on growth and somatic maintenance by modulating translation of a specific class of mRNA based on transcript length. 24 experimental samples were analyzed using custom oligo microarrays. A wild type sample pool was used as the Cy3 reference/control for all experimetal samples. All extracted RNA prior to array analysis was fractioned (via a sucrose gradient) based on ribosomal loading and pooled into ribosomal and free RNA (Fraction1), light polysomes (Fraction2) and heavy polysomes (Fraction3) as described in the experimental procedures. The control RNAi is ‘empty’ vector L4440 RNAi feeding vector plasmid (1999 Firelab vector kit) transformed HT115(DE3), which was obtained from the Caenorhabditis Genetics Center (University of Wisconsin).