Project description:Heat shock protein 90 (HSP90) is a molecular chaperone required for the stability and function of many proteins. The chaperoning of oncoproteins by HSP90 enhances survival, growth and invasive potential of cancer cells. HSP90 inhibitors are promising new anticancer agents, in which the benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin (17-AAG) is currently in clinical evaluation. However, the implications of acquired resistance to this class of drug remain largely unexplored. In the present study, we have generated isogenic human colonic cancer cell line SW480 that is resistant to 17-AAG by continued culturing in the compound. We used microarrays to detail the global programme of gene expression underlying the acquired resistance to 17-AAG in SW480 and SW480-R cell lines.
Project description:Breast cancer is the most common cancer that threatens women's health. While the strategy of drug combination can help to reduce adverse effects and to overcome the resistance of clinical treatment of single drug. In this work, we report the synergetic effect between a HSP90 inhibitor 17-AAG and a HDAC inhibitor Belinostat, on the triple-negative breast cancer MDA-MB-231 cells. The RNA-Seq data analysis showed that the most over-represented KEGG pathways in the combination group came from migration or invasion related genes, which were not observed in the differentially expressed genes after the treatment of 17-AAG or Belinostat alone.
Project description:We have done transcriptional profiling of 17-AAG treated (24h, 48H) breast cancer cell lines to understand the mechanisms of the drug action and indicate novel set of pharmacodynamic biomarkers of the drug response as well as of resistance
Project description:Combining different clinical agents to target multiple pathways in prostate cancer cells, including androgen receptor (AR) signaling, is potentially an effective strategy to improve outcomes for men with metastatic disease. We have previously demonstrated that sub-effective concentrations of an AR antagonist, bicalutamide, a histone deacetylase inhibitor, vorinostat (SAHA), and a hsp90 inhibitor, 17-AAG, act synergistically when combined to cause death of AR-dependent prostate cancer cells. In this study, expression profiling of human prostate cancer cells treated with bicalutamide, vorinostat (SAHA) or 17-AAG, alone or in paired combination, was employed to determine the molecular mechanisms underlying these synergistic interactions. We used microarray analysis to determine the global molecular profile contributing to the synergistic cell death in LNCaP human prostate cancer cells caused by combinations of bicalutamide, vorinostat (SAHA), or 17-AAG. LNCaP human prostate cancer cells were treated for 6 hours with drug treatments as follows: vehicle control, 5 uM bicalutamide, 1 uM vorinostat (SAHA), 40 nM 17-AAG, 5 uM bicalutamide + 40 nM 17-AAG, 40 nM 17-AAG + 1 uM vorinostat (SAHA), or 5 uM bicalutamide + 1 uM vorinostat (SAHA). Each treatment was performed in sextuplicate.
Project description:This phase I trial is studying the side effects and best dose of giving PDX101 together with 17-AAG in treating patients with metastatic or unresectable solid tumors or lymphoma. PDX101 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving PXD101 together with 17-AAG may kill more cancer cells.
Project description:We have done transcriptional profiling of 17-AAG treated (24h, 48H) breast cancer cell lines to understand the mechanisms of the drug action and indicate novel set of pharmacodynamic biomarkers of the drug response as well as of resistance Two-condition experiment, Untreated vs. Treated sensitive cells. Phenotype replicates: 8 untreated replicates, 14 treated replicates.
Project description:Combining different clinical agents to target multiple pathways in prostate cancer cells, including androgen receptor (AR) signaling, is potentially an effective strategy to improve outcomes for men with metastatic disease. We have previously demonstrated that sub-effective concentrations of an AR antagonist, bicalutamide, a histone deacetylase inhibitor, vorinostat (SAHA), and a hsp90 inhibitor, 17-AAG, act synergistically when combined to cause death of AR-dependent prostate cancer cells. In this study, expression profiling of human prostate cancer cells treated with bicalutamide, vorinostat (SAHA) or 17-AAG, alone or in paired combination, was employed to determine the molecular mechanisms underlying these synergistic interactions. We used microarray analysis to determine the global molecular profile contributing to the synergistic cell death in LNCaP human prostate cancer cells caused by combinations of bicalutamide, vorinostat (SAHA), or 17-AAG.
Project description:Heat shock protein 90 (Hsp90) is an essential evolutionarily conserved molecular chaperone in eukaryotes. Cancer cells rely on Hsp90 to chaperone activated oncoproteins, and its involvement in numerous signaling pathways makes it an attractive target for drug development. Surprisingly, however, the impact of Hsp90 inhibitors on cancer cells is most commonly cytostatic, and efforts to enhance the anti-tumor activity of Hsp90 inhibitors in the clinic remain a significant challenge. In this study, we show that dual inhibition of Wee1 tyrosine kinase and Hsp90 causes prostate cancer cells to undergo apoptosis. Gene-expression profiling revealed that induction of the intrinsic apoptotic pathway by this drug combination coincided with transcriptional down-regulation of Survivin and Wee1, an outcome not seen in cells treated separately with either agent. At the translational level, expression of these two proteins as well as activated Akt was completely abrogated. Similar results were obtained in prostate cancer xenografts. These data establish a novel therapeutic strategy to enhance the efficacy of Hsp90 inhibitors in prostate cancer, and they provide a mechanistic rationale for stimulating the pro-apoptotic activity of Hsp90 inhibitors. In order to explore the mechanism underlying the enhanced cell death caused by Wee1 inhibitorII and 17-AAG combination, we performed microarray analysis using PC3 cells treated with Wee1 inhibitorII alone, 17-AAG alone, or the two drugs in combination. There are 12 samples in total. There are three experimental replicate. Samples 1, 5 and 9 are control (C) (untreated PC3- prostate cancer cells). Samples 2, 6, and 10 are cells treated with Wee1 inhibitor II (W). Samples 3, 7, and 11 are treated with 17-AAG (A), (an Hsp90 inhibitor). Samples 4, 8, and 12 are treated with both Wee1 inhibitorII and 17-AAG (WA). Samples 5 was removed from our analysis due to weak signal.