Project description:To understand the role of Sox7 in primitive endoderm differentiation, we compare the gene expression pattern of Sox7 (+/-) and Sox7 (-/-) ES cells with or without dexamethasome (Dex) treatment. Because these ES cells harbour Gata6-GR transgene, Dex treatment forces ES cells differentate into XEN-like cells. As Sox7 (-/-) ES cells can differentiate into XEN-like cell by morphology, we assessed genome wide gene expression pattern. Sox7 (+/-) ES cells and Sox7 (-/-) ES cells are forced to differentiate into XEN-like cells by Gata6-GR transgene. To compare the gene expression, we collected RNA samples at day4 with or without dexamethasone treatment from each genotype.
Project description:To understand the role of Sox7 in primitive endoderm differentiation, we compare the gene expression pattern of Sox7 (+/-) and Sox7 (-/-) ES cells with or without dexamethasome (Dex) treatment. Because these ES cells harbour Gata6-GR transgene, Dex treatment forces ES cells differentate into XEN-like cells. As Sox7 (-/-) ES cells can differentiate into XEN-like cell by morphology, we assessed genome wide gene expression pattern.
Project description:Transcription factor-mediated reprogramming is a powerful method to study cell fate changes. In this work, we demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm (iXEN) cells. Intriguingly, Gata6 is sufficient to drive iXEN cells from mouse pluripotent cells and differentiated neural cells. Furthermore, GATA6 induction in human ES (hES) cells also downregulates pluripotency gene expression and upregulates extraembryonic endoderm genes, revealing a conserved function in mediating this cell fate switch. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement, with initial repression of Nanog and Esrrb, then Sox2 and finally Oct4, alongside step-wise activation of extraembryonic endoderm genes. Chromatin immunoprecipitation and subsequent high-throughput sequencing analysis shows Gata6 enrichment near both pluripotency and endoderm genes, suggesting that Gata6 functions as both a direct repressor and activator. Together this demonstrates that Gata6 is a versatile and potent reprogramming factor that can act alone to drive a cell fate switch from diverse cell types. (1) Microarray analysis of Gata6 overexpressing cells from 12 to 144 hours of doxycycline treatment in mouse embryonic stem (mES) cells compared to uninduced mES cells, embryo-derived XEN cells and Sox7 overexpressing mES cells after 144 hours of doxycycline treatment. (2) ChIP-seq analysis of Gata6 binding 36 hours following doxycycline treatment. (3) ChIP-seq analysis of Gata6 binding in embryo-derived XEN cells. (4) RNA-seq analysis of GATA6 overexpressing cells following 144 hours of induction in hES cells.
Project description:Transcription factor-mediated reprogramming is a powerful method to study cell fate changes. In this work, we demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm (iXEN) cells. Intriguingly, Gata6 is sufficient to drive iXEN cells from mouse pluripotent cells and differentiated neural cells. Furthermore, GATA6 induction in human ES (hES) cells also downregulates pluripotency gene expression and upregulates extraembryonic endoderm genes, revealing a conserved function in mediating this cell fate switch. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement, with initial repression of Nanog and Esrrb, then Sox2 and finally Oct4, alongside step-wise activation of extraembryonic endoderm genes. Chromatin immunoprecipitation and subsequent high-throughput sequencing analysis shows Gata6 enrichment near both pluripotency and endoderm genes, suggesting that Gata6 functions as both a direct repressor and activator. Together this demonstrates that Gata6 is a versatile and potent reprogramming factor that can act alone to drive a cell fate switch from diverse cell types. Time-course microarray analysis of Gata6-mediated reprogramming from 12 to 144 hours of doxycycline treatment in mouse embryonic stem (mES) cells compared to uninduced mES cells, embryo-derived extraembryonic endoderm (XEN) cells and Sox7 overexpressing mES cells after 144 hours of doxycycline treatment.
Project description:Stem cells self-renew or differentiate under the governance of a stem cell-specific transcriptional program with each transcription factor orchestrating the activities of a particular set of genes. Here we demonstrate that a single transcription factor is able to regulate distinct core circuitries in two different blastocyst-derived stem cell lines, embryonic stem (ES) and extra-embryonic endoderm (XEN) cells. The transcription factor, Sall4, is required for early embryonic development and for ES cell pluripotency. Sall4 is also expressed in XEN cells and depletion of Sall4 disrupts self-renewal and induces differentiation. Genome-wide analysis reveals Sall4 is regulating different gene sets in ES and XEN cells, and depletion of Sall4 targets in the respective cell types induces differentiation. With Oct4, Sox2 and Nanog, Sall4 forms a crucial interconnected auto-regulatory network in ES cells. In XEN cells, Sall4 regulates key XEN lineageassociated genes, Gata4, Gata6, Sox7 and Sox17. Our findings demonstrate how Sall4 functions as an essential stemness factor for two different stem cell lines. Keywords: ES/XEN comparison, ES Sall4 KD/control KD comparison, and XEN Sall4 KD/control KD comparison
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.