Project description:Comparison of whole genome gene expression profiles for Plasmodium falciparum parasites perturbed with small molecules with diverse mechanisms of action. Perturbations were performed by treating each synchronized parasite culture with a given small molecule at 24 hrs post-eryhrocyte invasion and RNA collected 2 hrs post-exposure
Project description:In malaria infection, Plasmodium spp. parasites accumulate in the bone marrow near sites of erythroid development. While it has been observed that Plasmodium falciparum infection of late-stage erythroblasts can delay terminal erythroid differentiation and enucleation, the mechanism(s) underlying this phenomenon are unknown. Here, we apply RNA-seq after fluorescence-activated cell sorting (FACS) of infected erythroblasts to identify transcriptional responses to direct and indirect interaction with P. falciparum.
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with WR99210 RNA from P. falciparum Dd2 and B1G9 (WR99210 resistant cell-line) trophozoites that had been treated with 10 nM WR99210 for varying durations (3, 6, 9, 15, 18, 21 and 24h) was hybridized against a common pool of trophozoite RNA from a cognate clone, a culture containing 0.1% (v/v) DMSO lacking drug was used as untreated control, microarray data were obtained from at least four hybridizations using RNA from two independent parasite cultures
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with pyrimethamine
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with pyrimethamine
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with WR99210
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with pyrimethamine RNA from pyrimethamine-treated parasite vs RNA from untreated control, Pyr-sensitive TM4/8.2 strain, pyrimethamine concentration at IC50 and treated for 0 h and 24 h, microarray data were obtained from at least four hybridizations using RNA from at lease two independent parasite cultures
Project description:To investigate the accumulation of non coding small RNAs we performed high throughput RNA sequencing on size selcted total RNA from malaria parasite Plasmodium falciparum
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with pyrimethamine RNA from pyrimethamine-treated parasite vs RNA from untreated control, Pyr-sensitive TM4/8.2 parasite strain, pyrimethamine concentration at IC50 and treated for 2 h, 4 h, and 8 h, microarray data were obtained from at least four hybridizations using RNA from at least two independent parasite cultures