Project description:The TET proteins TET1, TET2 and TET3 constitute a new family of dioxygenases that utilize molecular oxygen and the cofactors Fe(II) and 2-oxoglutarate to convert 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine (5hmC) and further oxidation products in DNA1-5. Here we show that Tet1 and Tet2 have distinct roles in regulating 5hmC deposition and gene expression in mouse embryonic stem cells (mESC). Tet1 depletion in mESC primarily diminishes 5hmC levels at transcription start sites (TSS), whereas Tet2 depletion is mostly associated with decreased 5hmC in gene bodies relative to TSS. 5hmC is enriched at exon start and end sites, especially in exons that are highly expressed, and is significantly decreased upon Tet2 knockdown at the boundaries of high-expressed exons that are selectively regulated by Tet2. In differentiating murine B cells, Tet2 deficiency is associated with selective exon exclusion in the gene encoding the transmembrane phosphatase CD45. Tet2 depletion is associated with increased 5hmC and decreased 5mC at promoters/ TSS regions, possibly because of the redundant activity of Tet1. Together, these data indicate a complex interplay between Tet1 and Tet2 in mESC, and show that loss-of-function of a single TET protein does not necessarily lead to loss of 5hmC and a corresponding gain of 5mC, as generally assumed. The relation between Tet2 loss-of-function and selective changes in exon expression could potentially explain the frequent occurrence of both TET2 loss-of-function mutations and mutations in proteins involved in pre-mRNA splicing in myeloid malignancies in humans. Gene and exon expression analysis in mESC, Tet1 knockdown mESC, and Tet2 knockdown mESC by RNA-sequencing. Mapping of 5-hydroxymethylcytosine in mESC, Tet1 knockdown mESC, and Tet2 knockdown mESC by anti-CMS-seq. Mapping of methylcytosine in mESC, and Tet2 kd mESC by MeDIP-seq.
Project description:The TET proteins TET1, TET2 and TET3 constitute a new family of dioxygenases that utilize molecular oxygen and the cofactors Fe(II) and 2-oxoglutarate to convert 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine (5hmC) and further oxidation products in DNA1-5. Here we show that Tet1 and Tet2 have distinct roles in regulating 5hmC deposition and gene expression in mouse embryonic stem cells (mESC). Tet1 depletion in mESC primarily diminishes 5hmC levels at transcription start sites (TSS), whereas Tet2 depletion is mostly associated with decreased 5hmC in gene bodies relative to TSS. 5hmC is enriched at exon start and end sites, especially in exons that are highly expressed, and is significantly decreased upon Tet2 knockdown at the boundaries of high-expressed exons that are selectively regulated by Tet2. In differentiating murine B cells, Tet2 deficiency is associated with selective exon exclusion in the gene encoding the transmembrane phosphatase CD45. Tet2 depletion is associated with increased 5hmC and decreased 5mC at promoters/ TSS regions, possibly because of the redundant activity of Tet1. Together, these data indicate a complex interplay between Tet1 and Tet2 in mESC, and show that loss-of-function of a single TET protein does not necessarily lead to loss of 5hmC and a corresponding gain of 5mC, as generally assumed. The relation between Tet2 loss-of-function and selective changes in exon expression could potentially explain the frequent occurrence of both TET2 loss-of-function mutations and mutations in proteins involved in pre-mRNA splicing in myeloid malignancies in humans. Gene and exon expression analysis in mESC, Tet1 knockdown mESC, and Tet2 knockdown mESC by RNA-sequencing. Mapping of 5-hydroxymethylcytosine in mESC, Tet1 knockdown mESC, and Tet2 knockdown mESC by anti-CMS-seq. Mapping of methylcytosine in mESC, and Tet2 kd mESC by MeDIP-seq.
Project description:The TET proteins TET1, TET2 and TET3 constitute a new family of dioxygenases that utilize molecular oxygen and the cofactors Fe(II) and 2-oxoglutarate to convert 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine (5hmC) and further oxidation products in DNA1-5. Here we show that Tet1 and Tet2 have distinct roles in regulating 5hmC deposition and gene expression in mouse embryonic stem cells (mESC). Tet1 depletion in mESC primarily diminishes 5hmC levels at transcription start sites (TSS), whereas Tet2 depletion is mostly associated with decreased 5hmC in gene bodies relative to TSS. 5hmC is enriched at exon start and end sites, especially in exons that are highly expressed, and is significantly decreased upon Tet2 knockdown at the boundaries of high-expressed exons that are selectively regulated by Tet2. In differentiating murine B cells, Tet2 deficiency is associated with selective exon exclusion in the gene encoding the transmembrane phosphatase CD45. Tet2 depletion is associated with increased 5hmC and decreased 5mC at promoters/ TSS regions, possibly because of the redundant activity of Tet1. Together, these data indicate a complex interplay between Tet1 and Tet2 in mESC, and show that loss-of-function of a single TET protein does not necessarily lead to loss of 5hmC and a corresponding gain of 5mC, as generally assumed. The relation between Tet2 loss-of-function and selective changes in exon expression could potentially explain the frequent occurrence of both TET2 loss-of-function mutations and mutations in proteins involved in pre-mRNA splicing in myeloid malignancies in humans. Gene and exon expression analysis in mESC, Tet1 knockdown mESC, and Tet2 knockdown mESC by RNA-sequencing. Mapping of 5-hydroxymethylcytosine in mESC, Tet1 knockdown mESC, and Tet2 knockdown mESC by anti-CMS-seq. Mapping of methylcytosine in mESC, and Tet2 kd mESC by MeDIP-seq.
Project description:Nephron endowment is a key determinant of later life hypertension and kidney disease. Here we studied whether epigenetic changes, specifically the ten–eleven translocation (Tet) DNA demethylase family, Tet1, Tet2, and Tet3-mediated active DNA hydroxymethylation is necessary for gene expression regulation and kidney differentiation. We generated mice with deletion of Tet1, Tet2 or Tet3 in Six2 positive nephron progenitors (NP). We did not observe changes in development or kidney function in mice with nephron progenitor-specific deletion of Tet1, Tet2, Tet3 or Tet1/Tet2 or Tet1/Tet3. On the other hand, mice with combined Tet2 and Tet3 loss in Six2-positive NPCs failed to form nephrons leading to kidney failure and perinatal death. Tet2 and Tet3 loss in Six2-positive NPs resulted in defect in mesenchymal to epithelial transition and renal vesicle differentiation. Whole genome bisulfite sequencing, single cell RNA sequencing, and gene and protein expression assay identified a defect in expression in genes in the WNT-β-catenin signaling pathway in absence of Tet2 and Tet3 due to a failure in demethylation of these loci. Our results indicate the key role of Tet2 and Tet3-mediated active cytosine hydroxymethylation in NPs in kidney development and nephron endowment.
Project description:We inactivated RYBP, YAF2, TET1, TET2, and TET3 in bronchial cells, individually and in combination, and observed widespread DNA methylation by performing whole genome bisulfite sequencing.
Project description:The TET family of dioxygenases catalyze conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), but their involvement in establishing normal 5mC patterns during mammalian development and their contributions to aberrant control of 5mC during cellular transformation remains largely unknown. We depleted TET1, TET2, and TET3 by siRNA in a pluripotent embryonic carcinoma cell model and examined the impact on genome-wide 5mC and 5hmC patterns. TET1 depletion yielded widespread reduction of 5hmC, while depletion of TET2 and TET3 reduced 5hmC at a subset of TET1 targets suggesting functional co-dependence. TET2 or TET3-depletion also caused increased 5hmC, suggesting they play a major role in 5hmC removal. All TETs prevent hypermethylation throughout the genome, a finding dramatically illustrated in CpG island shores, where TET depletion resulted in prolific hypermethylation. Surprisingly, TETs also promote methylation, as hypomethylation was associated with 5hmC reduction. TET function was highly specific to chromatin environment: 5hmC maintenance by all TETs occurred at polycomb-marked chromatin and genes expressed at moderate levels; 5hmC removal by TET2 is associated with highly transcribed genes enriched for H3K4me3 and H3K36me3. Importantly, genes prone to hypermethylation in cancer become depleted of 5hmC with TET deficiency, suggesting the TETs normally promote 5hmC at these loci, and all three TETs are required for 5hmC enrichment at enhancers, a condition necessary for expression of adjacent genes. These results provide novel insight into the division of labor among TET proteins and reveal an important connection of TET activity with chromatin landscape and gene expression. Affymetrix gene expression Human ST1.0 microarray of NCCIT human embryonic carcinoma cells (4 samples in duplicate).
Project description:TET proteins convert 5-methylcytosine to 5-hydroxymethylcytosine, an emerging dynamic epigenetic state of DNA that can influence transcription. Evidence has linked TET1 function to epigenetic repression complexes, yet mechanistic information, especially for the TET2 and TET3 proteins, remains limited. Here, we show a direct interaction of TET2 and TET3 with O-GlcNAc transferase (OGT). OGT does not appear to influence hmC activity, rather TET2 and TET3 promote OGT activity. TET2/3-OGT co-localize on chromatin at active promoters enriched for H3K4me3 and reduction of either TET2/3 or OGT activity results in a direct decrease in H3K4me3 and concomitant decreased transcription. Further, we show that Host Cell Factor 1 (HCF1), a component of the H3K4 methyltransferase SET1/COMPASS complex, is a specific GlcNAcylation target of TET2/3-OGT, and modification of HCF1 is important for the integrity of SET1/COMPASS. Additionally, we find both TET proteins and OGT activity promote binding of the SET1/COMPASS H3K4 methyltransferase, SETD1A, to chromatin. Finally, studies in Tet2 knockout mouse bone marrow tissue extend and support the data as decreases are observed of global GlcNAcylation and also of H3K4me3, notably at several key regulators of haematopoiesis. Together, our results unveil a step-wise model, involving TET-OGT interactions, promotion of GlcNAcylation, and influence on H3K4me3 via SET1/COMPASS, highlighting a novel means by which TETs may induce transcriptional activation. ChIP-Seq experiments were performed on Illumina HiScanSQ sequencer in wild-type HEK293T cells for H3K4me3 histone marks, O-GlcNAc and HCF1, for HT-TET2, HT-TET3 and HT-OGT in HEK293T cells overexpressing those three fusion proteins and in TET2 Kd HEK293T cells for H3K4me3 histone marks. ChIP-Seqs were also performed in mouse bone marrow tissues for H3K4me3 histone marks, O-GlcNAc, endogenous Tet2 and in Tet2 Ko bone marrow tissues for H3K4me3 histone marks.