Project description:Histones were isolated from brown adipose tissue and liver from mice housed at 28, 22, or 8 C. Quantitative top- or middle-down approaches were used to quantitate histone H4 and H3.2 proteoforms. See published article for complimentary RNA-seq and RRBS datasets.
Project description:In order to select mRNA transcripts strongly enriched in murine white adipocytes versus brown adipocytes or stromal-vascular fraction, gene expression data of the adipocyte and stromal-vascular fractions of the interscapular brown, inguinal subcutaneous as well as visceral epididymal adipose tissue depots of young adult male C57BL/6 mice housed at constant 23°C ambient temperature were obtained.
Project description:In order to select mRNA transcripts strongly enriched in murine white adipocytes versus brown adipocytes or stromal-vascular fraction, gene expression data of the adipocyte and stromal-vascular fractions of the interscapular brown, inguinal subcutaneous as well as visceral epididymal adipose tissue depots of young adult male C57BL/6 mice housed at constant 23°C ambient temperature were obtained. 18 samples: 3 different adipose tissues separated into stromal-vascular fraction and adipocytes, analyzed in biological triplicates.
Project description:To understand differences in microRNA (miRNA) signatures between two different diets with and without EPA in brown, subcutaneous, and viscerl tissue from C57BL/6 mice to understand mechanistic insight regarding their contribution to metabolic disorders in obesity. We performed small RNA-sequencing of brown, subcutaneous adipose from high fat diet (45% kcal from fat) and high fat diet supplemented with EPA (45% Kcal from fat, 6.75% EPA). Using the Gunaratne Next Generation pipeline (published in Creighton et al. 2009) miRNA expression profiles were identified. Counts of each unique read were normalized to total usable reads, and had 40 counts added. We mapped about 13.8 million sequence reads per sample to the Mus musculus genome (build mm 10). AS a total 1251 miRNAs were identified in three adipose tissue and out of which in bown adipose tissue 15 showd differential expression between BF-HF and BF-EPA .IN subcutaneous adipose tissue 3 miRNAs showed differntial expression between SUB-HF and SUB-EPA. EPA differentially regulate specific miRNAs expression in brown, subcutaneous, and visceral adipose tissue.
Project description:Brown adipose tissue (BAT) has in recent times been rediscovered in adult humans, and together with work from preclinical models, shown to have the potential of providing a variety of positive metabolic benefits. These include improved insulin sensitivity and reduced susceptibility to obesity and its various co-morbidities. As such, its continued study could offer insights to therapeutically modulate this tissue to improve metabolic health. It has been reported that adipose-specific deletion of the gene for protein kinase D1 (Prkd1) enhances mitochondrial respiration and improves whole-body glucose homeostasis. We sought to determine whether these effects were mediated specifically through brown adipocytes using a Prkd1 brown adipose tissue (BAT) Ucp1-Cre-specific knockout mouse model, Prkd1BKO. We unexpectedly observed that upon both cold exposure and beta-3-AR agonist administration, Prkd1 loss in BAT did not alter canonical thermogenic gene expression or adipocyte morphology. We took an unbiased approach to assess whether other signaling pathways were altered. RNAs from cold-exposed control and Prkd1BKO were subjected to RNA-Seq analysis. These studies revealed that myogenic gene expression is altered in Prkd1BKO BAT after both acute (8 hr) and extended (4 day) cold exposure. Given that brown adipocytes and skeletal myocytes share a common precursor cell lineage expressing myogenic factor 5 (Myf5), these data suggest that loss of Prkd1 in BAT may alter the biology of preadipocytes in this depot. The data presented herein clarify the role of Prkd1 in BAT thermogenesis and present new avenues for the further study of Prkd1 function in BAT.
Project description:Two types of adipose tissues, white and brown, are found in mammals. Increasingly novel strategies are being proposed for the treatment of obesity and its associated complications by altering amount and/or activity of BAT using mouse models. We used microarrays to detail the global programme of gene expression in subcutaneous white adipose tissue and brown adipose tissue. White adipose tissue (Subcutaneous region) and brown adipose tissue (intrascapular) were isolated from LACA mice (male, 25 ± 3g ) for RNA extraction and hybridization on Affymetrix microarrays.