Project description:Background: The food-borne pathogen Campylobacter is one of the most important zoonotic pathogens. Compared to other zoonotic bacteria, Campylobacter species are quite susceptible to environmental or technological stressors. This might be due to the lack of many stress response mechanisms described in other bacteria. Nevertheless, Campylobacter is able to survive in the environment and food products. Although some aspects of the heat stress response in Campylobacter (C.) jejuni are already known, information about the heat stress response in the related species C. coli and C. lari are still unknown. Results: The stress response to elevated temperatures (46°C) was investigated by survival assays and whole transcriptome analyses for the strain C. jejuni NCTC11168, C. coli RM2228 and C. lari RM2100. While C. jejuni showed highest thermotolerance followed by C. lari and C. coli, none of the strains survived at this temperature for more than 24 hours. Transcriptomic analyses revealed that only 3 % of the genes in C. jejuni and approx. 20 % of the genes of C. coli and C. lari were differentially expressed after heat stress, respectively. The transcriptomic profiles showed enhanced gene expression of several chaperones like dnaK, groES, groEL and clpB in all strains, but differences in the gene expression of transcriptional regulators like hspR, perR as well as for genes involved in metabolic pathways, translation processes and membrane components. However, the function of many of the differentially expressed gene is unknown so far. Conclusion: We could demonstrate differences in the ability to survive at elevated temperatures for C. jejuni, C. coli and C. lari and showed for the first time transcriptomic analyses of the heat stress response of C. coli and C. lari. Our data suggest that the heat stress response of C. coli and C. lari are more similar to each other compared to C. jejuni, even though on genetic level a higher homology exists between C. jejuni and C. coli. This indicates that stress response mechanisms described for C. jejuni might be unique for this species and not necessarily transferable to other Campylobacter species.
Project description:Background: The food-borne pathogen Campylobacter is one of the most important zoonotic pathogens. Compared to other zoonotic bacteria, Campylobacter species are quite susceptible to environmental or technological stressors. This might be due to the lack of many stress response mechanisms described in other bacteria. Nevertheless, Campylobacter is able to survive in the environment and food products. Although some aspects of the heat stress response in Campylobacter (C.) jejuni are already known, information about the heat stress response in the related species C. coli and C. lari are still unknown. Results: The stress response to elevated temperatures (46°C) was investigated by survival assays and whole transcriptome analyses for the strain C. jejuni NCTC11168, C. coli RM2228 and C. lari RM2100. While C. jejuni showed highest thermotolerance followed by C. lari and C. coli, none of the strains survived at this temperature for more than 24 hours. Transcriptomic analyses revealed that only 3 % of the genes in C. jejuni and approx. 20 % of the genes of C. coli and C. lari were differentially expressed after heat stress, respectively. The transcriptomic profiles showed enhanced gene expression of several chaperones like dnaK, groES, groEL and clpB in all strains, but differences in the gene expression of transcriptional regulators like hspR, perR as well as for genes involved in metabolic pathways, translation processes and membrane components. However, the function of many of the differentially expressed gene is unknown so far. Conclusion: We could demonstrate differences in the ability to survive at elevated temperatures for C. jejuni, C. coli and C. lari and showed for the first time transcriptomic analyses of the heat stress response of C. coli and C. lari. Our data suggest that the heat stress response of C. coli and C. lari are more similar to each other compared to C. jejuni, even though on genetic level a higher homology exists between C. jejuni and C. coli. This indicates that stress response mechanisms described for C. jejuni might be unique for this species and not necessarily transferable to other Campylobacter species.
Project description:Seven different Solanaceae species, Potato (Solanum tuberosum), Tomato (Solanum lycopersicum), Eggplant (Solanum melongena), Pepper (Capsicum annuum), Tobacco (Nicotiana tabacum), Petunia and Nicotiana benthamiana were subjected to heat stress. Plants were grown for 4-6 weeks at 25 C after which heat stress was initiated by exposing the plants to 35 C for 6, 12, 24, 48 and 96 hours. Control samples were isolated from plants just before initiating the heat stress. RNA was isolated using Qiagen RNeasy. Keywords: Direct comparison
Project description:Patterns of alternative splicing during heat stress in Arabidopsis thaliana and Boechera depauperata indicate complex and species-specific interactions between differential expression and alternative splicing.
Project description:Background: During gut colonization, the enteric pathogen C. jejuni has to surmount the toxic effects of reactive oxygen species produced by its own metabolism, by the host immune system and by the intestinal microflora. Elucidation of C. jejuni oxidative stress defense mechanisms is critical for understanding Campylobacter pathophysiology. Results: The mechanisms of oxidative stress defenses in Campylobacter jejuni were characterized by transcriptional profiling, genes mutagenesis, and phenotypic analysis. The transcriptome changes, in response to H2O2, cumene hydroperoxide, or menadione exposure, were found to be oxidant specific and revealed the differential expression of genes belonging to a variety of biological pathways, from the classical oxidative stress defense systems, to the heat shock response, DNA repair and metabolism, fatty acid and capsule biosynthesis, and multidrug efflux pumps. To define the peroxide sensing regulator PerR, an isogenic mutant was constructed and its transcriptome profile compared to the wild-type strain. Sixty-six genes were found to belong to the PerR regulon. PerR appear to regulate gene expression both dependently and independently of the presence of iron and/or H2O2. The perR mutant was affected in its motility and attenuated in the chick colonization model. Mutagenic and phenotypic studies of the superoxide disumutase SodB, the alkyl-hydroxyperoxidase AhpC, and the catalase KatA, revealed their role in oxidative stress defenses and chick gut colonization. Conclusion: This study reveals the interplay between PerR, the iron metabolism and the oxidative stress defenses and highlights their role in the colonization and/or survival of C. jejuni in the chick cecum. Keywords: Transcriptional response to 3 oxidants (H2O2, menadione and cumene hydroperoxide) and characterization of the perR regulon (comparison of the transciptomes from the wild-type and perR mutant).
Project description:Different yeast strains were subjected to heat stresss; samples were collected at 0, 5, 10, 15, 20, 25 and 30 minutes after heat stress; microarray analysis were performed using the Affymetrix Y-GS98 microarray.