Project description:We have shown in a previous study that the intake of persimmon peel (PP) extract altered hepatic gene expression of insulin signaling and enhanced tyrosine phosphorylation of insulin receptors in nonobese type 2 diabetic Goto–Kakizaki rats. We also showed the alteration of gene expression in fatty acid synthesis and metabolism. To evaluate the effect of PP extract on obese diabetic KK-Ay mice, we fed them a diet mixed with 0.1% of the extract for 8 weeks. The plasma total ketone bodies level of the treated mice were significantly lower than that of the untreated mice. The hepatic gene expression profiles of treated mice indicated upregulation of fatty acid biosynthesis-associated gene expression. Hepatic nonesterified palmitic acid content was higher in treated mice than in untreated mice. These results suggest that the intake of PP extract enhances hepatic fatty acid biosynthesis of KK-Ay mice, reducing their plasma total ketone bodies level.
Project description:Persimmon (Diospyros kaki L. f.) is a most popular fruit in Asian countries but its peels are totally wasted despite of containing a plenty of antioxidants such as carotenoids and polyphenols. We prepared a fat-soluble extract from a persimmon peel (PP) fraction and fed type 2 diabetic Goto-Kakizaki (GK) rats with a PP extract-containing AIN-93G diet (PP diet) for 12 weeks. Compared with the control AIN-93G diet, the feeding of the PP diet reduced the plasma glutamic-pyruvate transaminase activity significantly, with accumulation of β-cryptoxanthin in the liver. A DNA microarray analysis revealed that the PP diet altered the hepatic gene expression profiles. In particular, insulin signaling pathway-related genes were significantly enriched in differentially expressed gene sets. Moreover, Western blotting analysis actually showed the promotion of IRβ tyrosine phosphorylation. All these data suggest that the PP extract administration to the GK rats improves their insulin resistance.
Project description:Persimmon (Diospyros kaki L. f.) is a most popular fruit in Asian countries but its peels are totally wasted despite of containing a plenty of antioxidants such as carotenoids and polyphenols. We prepared a fat-soluble extract from a persimmon peel (PP) fraction and fed type 2 diabetic Goto-Kakizaki (GK) rats with a PP extract-containing AIN-93G diet (PP diet) for 12 weeks. Compared with the control AIN-93G diet, the feeding of the PP diet reduced the plasma glutamic-pyruvate transaminase activity significantly, with accumulation of M-NM-2-cryptoxanthin in the liver. A DNA microarray analysis revealed that the PP diet altered the hepatic gene expression profiles. In particular, insulin signaling pathway-related genes were significantly enriched in differentially expressed gene sets. Moreover, Western blotting analysis actually showed the promotion of IRM-NM-2 tyrosine phosphorylation. All these data suggest that the PP extract administration to the GK rats improves their insulin resistance. Male GK rats (90M-bM-^@M-^S107 g), aged 5 weeks, were purchased from Japan SLC Co. (Hamamatsu, Japan). The rats were maintained in a room at 22 M-BM-1 1M-BM-0C under a 12-h light-dark cycle (lights on at 0800) and administered a commercial diet (AIN-93G, Research Diets, Inc., New Brunswick, NJ, USA) for a week. The rats were allowed free access to diet and water. After one week, they were divided into two groups with similar average body weights. The control group rats (n = 4) were fed on the commercial diet, and the PP group rats (n = 4) on the same diet containing the PP extract. After the 12-week-feeding the liver was excised and analyzed the effect of PP extract administration on hepatic gene expression.
Project description:A recent study showed that 54% of type 2 diabetes (T2D) patients have nonalcoholic fatty liver disease, which is a risk factor for aggravation diabetic symptoms. Previous studies suggested components in maple syrup alleviated liver injury and found polyphenols as food components to improve the symptoms and complications of diabetes. Therefore, we hypothesized that a polyphenol fraction in maple syrup improves the symptoms and complications of diabetes. To address the hypothesis, we investigated the effects of a polyphenol-rich maple syrup extract (MSE) on a T2D model mice. KK-Ay mice were fed a normal or 0.1% MSE-supplemented diet for 43 days. The results showed that the levels of serum alanine aminotransferase and aspartate aminotransferase were significantly reduced in mice that ingested MSE. Hepatic genes related to lipogenesis and lipolysis were down- and upregulated, respectively, in mice that ingested MSE. These results suggest that MSE intake alleviates liver injury and suppresses lipid accumulation in the livers of T2D mice.
Project description:Some polyphenols are known to improve the symptoms of diabetes. In the present study, we investigated the effects of a polyphenol-rich extract of maple syrup (MSx) on a diabetic mouse model. KK-Ay mice were fed a normal or 0.05% MSx-supplemented diet for 42 days. Body weight, food intake, serum biochemical parameters, and fecal total bile acid were measured. Gene expression of liver and epididymal white adipose tissue (WAT) and cecal microbiota were analyzed. Data were analyzed with an unpaired two-tailed Student’s t test or Welch’s t test according to the results of the F test. Serum low-density lipoprotein cholesterol levels were significantly reduced in mice that consumed MSx. Hepatic genes related to fatty acid degradation and cholesterol catabolism were upregulated in mice that consumed MSx. In contrast, the expression of genes related to lipid metabolism in WAT was unaffected by the intake of MSx. There were no significant differences between the two groups in terms of total bile acid level in the feces and the relative abundance of bacteria in the cecum. Our results primarily indicate that MSx can help alleviate one of the symptoms of dyslipidemia.
Project description:Some polyphenols are known to improve the symptoms of diabetes. In the present study, we investigated the effects of a polyphenol-rich extract of maple syrup (MSx) on a diabetic mouse model. KK-Ay mice were fed a normal or 0.05% MSx-supplemented diet for 42 days. Body weight, food intake, serum biochemical parameters, and fecal total bile acid were measured. Gene expression of liver and epididymal white adipose tissue (WAT) and cecal microbiota were analyzed. Data were analyzed with an unpaired two-tailed Student’s t test or Welch’s t test according to the results of the F test. Serum low-density lipoprotein cholesterol levels were significantly reduced in mice that consumed MSx. Hepatic genes related to fatty acid degradation and cholesterol catabolism were upregulated in mice that consumed MSx. In contrast, the expression of genes related to lipid metabolism in WAT was unaffected by the intake of MSx. There were no significant differences between the two groups in terms of total bile acid level in the feces and the relative abundance of bacteria in the cecum. Our results primarily indicate that MSx can help alleviate one of the symptoms of dyslipidemia.