Project description:Bovine Amyloidotic Spongiform Encephalopathy (BASE) is a variant of classical BSE that affects cows and can be transmitted to primates and mice.The present work examined the effects of BASE on gene expression in circulating immune cells. Ontology analysis of genes differentially expressed between cattle orally challenged with brain homogenate from cattle confirmed as BASE and control cattle identified three main pathway which were affected. Within the immune function pathway, the most affected genes were related to the T Cell Receptor-mediated T Cell activation pathways. The differential expression of these genes in BASE challenged animals at 10,12 and 24 months following challenge vs controls, was investigated. The results of this study show that the effects of prion diseases are not limited to the CNS, but involve the immune system and particularly T cell signalling during the early stage following challenge before the appearance of signs if infection or clinical symptoms. In the present work we analysed 5 sample from cows orally challenged with BASE and 5 negative samples for the microarray analysis. Probes, negative and quality controls of the microarray were synthesized in duplicate. Samples from four orally challenged cattle and four different negative control Holstein cows were used for the confirmation and time-course studies with real time PCR. Each qRT-PCR reaction was performed in triplicate
Project description:Bovine Amyloidotic Spongiform Encephalopathy (BASE) is a variant of classical BSE that affects cows and can be transmitted to primates and mice.The present work examined the effects of BASE on gene expression in circulating immune cells. Ontology analysis of genes differentially expressed between cattle orally challenged with brain homogenate from cattle confirmed as BASE and control cattle identified three main pathway which were affected. Within the immune function pathway, the most affected genes were related to the T Cell Receptor-mediated T Cell activation pathways. The differential expression of these genes in BASE challenged animals at 10,12 and 24 months following challenge vs controls, was investigated. The results of this study show that the effects of prion diseases are not limited to the CNS, but involve the immune system and particularly T cell signalling during the early stage following challenge before the appearance of signs if infection or clinical symptoms.
Project description:The Gayal (Bos frontalis) is a rare semi-domesticated cattle in China. Gayal has typical beef body shape and good meat production performance. Compared with other cattle species, it has the characteristics of tender meat and extremely low fat content. To explore the underlying mechanism responsible for the differences of meat quality between different breeds, the longissimus dorsi muscle (LM) from Gayal and Banna cattle (Bos taurus) were investigated using transcriptome analysis. The gene expression profiling identified 638 differentially expressed genes (DEGs) between LM muscles from Gayal and Banna cattle. Gene Ontology (GO) enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene products were mainly involved in the PPAR signaling pathway, lipid metabolism and amino acid metabolism pathway. Protein-protein interaction(PPI) network analysis showed APOB, CYP7A1, THBS2, ITGAV, IGFBP1 and IGF2R may have great impact on meat quality characteristics of Gayal. Moreover, three transcription factors, FOXA2, NEUROG2, and RUNX1, which may affect meat quality by regulating the expression of genes related to muscle growth and development have also been found. In summary, our research reveals the molecular mechanisms that cause Gayal meat quality characteristics. It will contribute to improving meat quality of cattle through molecular breeding.
Project description:Infertility is a disease that affects humans and cattle in similar ways. The resemblance includes complex genetic architecture, multiple etiology, low heritability of fertility related traits in females, and the frequency in the female population. Here, we used cattle as a biomedical model to test the hypothesis that gene expression profiles of protein-coding genes expressed in peripheral white blood cells (PWBCs), and circulating micro RNAs in plasma, are associated with female fertility, measured by pregnancy outcome. We drew blood samples from 17 female calves on the day of artificial insemination and analyzed transcript abundance for 10496 genes in PWBCs and 290 circulating micro RNAs. The females were later classified as pregnant to artificial insemination, pregnant to natural breeding or not pregnant. We identified 1860 genes producing significant differential coexpression (eFDR<0.002) based on pregnancy outcome. Additionally, 237 micro RNAs and 2274 genes in PWBCs presented differential coexpression based on pregnancy outcome. Furthermore, using a machine learning prediction algorithm we detected a subset of genes whose abundance could be used for blind categorization of pregnancy outcome. Our results provide strong evidence that bloodborne transcript abundance is highly associated with fertility in females.
Project description:Tropical theileriosis in a cattle disease of global economic importance, caused by the tick-borne protozoan parasite Theileria annulata. Conventional control strategies are failing to contain the disease and an attractive alternative is the use of pre-existing genetic resistance or tolerance. However, tropical theileriosis tolerant cattle are less productive than some susceptible breeds. To combine resistance and production traits requires an understanding of the mechanisms involved in resistance. Therefore, we have compared the response of monocytes derived from tolerant (Sahiwals, Bos indicus) and susceptible (Holstein-Friesians, B. taurus) cattle to in vitro infection with T. annulata. Over 150 genes exhibited breed-specific differential expression during the course of infection and nearly one third were differentially expressed in resting cells, implying that there are inherent differences between monocytes from the breeds. Fifty sequences currently only match ESTs or are unique to the library used to generate the microarray. The differential expression of a selection of genes was validated by quantitative RT-PCR, e.g. CD9, prion protein and signal-regulatory protein alpha. A large proportion of the differentially expressed genes encode proteins expressed on the plasma membrane or in the extracellular space and cell adhesion was one of the major Gene Ontology biological processes identified. We therefore hypothesise that the breed-specific tolerance of Sahiwal cattle compared to Holstein-Friesians is due to the interaction of infected cells with other immune cells, which influences the immune response generated against T. annulata infection. The BoMP microarray is available from the ARK-Genomics facility (www.ark-genomics.org).
Project description:The Toll-like receptor (TLR) and peptidoglycan recognition protein 1 (PGLYRP1) genes play key roles in the innate immune systems of mammals. While the TLRs recognize a variety of invading pathogens and induce innate immune responses, PGLYRP1 is directly microbicidal. We used custom allele-specific assays to genotype and validate 220 diallelic variants, including 54 nonsynonymous SNPs in 11 bovine innate immune genes (TLR1-TLR10, PGLYRP1) for 37 cattle breeds. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and we were unable to differentiate between the specialized B. t. taurus beef and dairy breeds, despite an average polymorphism density of one locus per 219 bp. Ninety-nine tagSNPs and one tag insertion-deletion polymorphism were sufficient to predict 100% of the variation at all 11 innate immune loci in both subspecies and their hybrids, whereas 58 tagSNPs captured 100% of the variation at 172 loci in B. t. taurus. PolyPhen and SIFT analyses of nonsynonymous SNPs encoding amino acid replacements indicated that the majority of these substitutions were benign, but up to 31% were expected to potentially impact protein function. Several diversity-based tests provided support for strong purifying selection acting on TLR10 in B. t. taurus cattle. These results will broadly impact efforts related to bovine translational genomics.