Project description:Gene expression data from wild-type and Bcl6-/- naive CD4 T cells In order to find genes regulated by Bcl6 in follicular helper T cells Naïve CD4 T cells were sorted from wild-type (WT) and T cell-specific conditional Bcl6-/- (KO) mice-- 8 samples, 4 WT and 4 KO
Project description:Gene expression data from wild-type and Bcl6-/- naive CD4 T cells In order to find genes regulated by Bcl6 in follicular helper T cells Naïve CD4 T cells were sorted from wild-type (WT) and T cell-specific conditional Bcl6-/- (KO) mice-- 8 samples, 4 WT and 4 KO
Project description:Naïve CD4+ T cells coordinate the immune response by acquiring an effector phenotype in response to cytokines. However, the cytokine responses in memory T cells remain largely understudied. We used quantitative proteomics, bulk RNA-seq and single-cell RNA-seq of over 40,000 human naïve and memory CD4+ T cells to generate a detailed map of cytokine-regulated gene expression programs. We demonstrated that cytokine response differs substantially between naïve and memory T cells and showed that memory cells are unable to differentiate into the Th2 phenotype. Moreover, memory T cells acquire a Th17-like phenotype in response to iTreg polarization. At the single-cell level, we demonstrated that T cells form a continuum which progresses from naïve to effector memory T cells. This continuum is accompanied by a gradual increase in the expression levels of chemokines and cytokines and thus represents an effectorness gradient. Finally, we found that T cell cytokine responses are determined by where the cells lie in the effectorness gradient and identified genes whose expression is controlled by cytokines in an effectorness-dependent manner. Our results shed light on the heterogeneity of T cells and their responses to cytokines, provide insight into immune disease inflammation and could inform drug development.
Project description:By using a temporally-controlled system for the ablation of Bcl6 and Cxcr5 speficially in CD4 T cells, the requirements of both factors for the maintenance of Tfh cells were investigated
Project description:We found that a number of Tfh cells downmodulated BCL6 protein after their development, and we sought to compare the gene expression between BCL6-hi Tfh cells and BCL6-low Tfh cells. CD4+ T cells were sorted from immunized and non-immunized mice for RNA extraction and hybridization on Affymetrix microarrays. Bcl6yfp/+ OT-II cells were transferred to congenic recipient mice, and immunized with NP-OVA in CFA subcutaneously. Seven or ten days after immunization, cells were collected from draining lymph nodes, and sorted on FACSAria by the expression of CXCR5, PD-1 and BCL6-YFP. Naive CD4+ T cells were CD4+ CD44lo CD62Lhi cells from unimmunized mice.