Project description:The contribution of non-resident, non-satellite myogenic progenitors to postnatal muscle homeostasis and repair is controversial. Precursor cells with the capacity to generate striated muscle fibers in vitro have been isolated from diverse adult tissues, although their physiological role being currently unclear. Since murine dermis-derived precursor cell cultures generate striated muscle when transplanted in vivo, we pursued to identify and characterize the myogenic cell population present in dermis-derived sphere cultures. Lineage tracing experiments for myogenic, perivascular and dermal precursor cell lineages showed a major contribution of Myf5 and Pax7-positive cell progeny to the dermal myogenic precursor cell subset. Tracing, in situ localization and ultrastructural analyses unequivocally demonstrated that Panniculus carnosus muscle-derived satellite stem cells expand in the dermal sphere culture conditions and originate dermis-derived myofibers in vitro. These results highlight the importance of unraveling distinct lineages in sphere cultures to avoid wrong assumptions when determining the developmental potential of adult stem cells. strain: Crl:CD1(ICR), B6.129S4-Myf5tm3(cre)Sor /J, B6,FVB-Tg(Cspg4-cre)1Akik/J, B195AP-Cre
Project description:The satellite cell is considered the major tissue-resident stem cell underlying muscle regeneration, however, multiple non-satellite cell myogenic progenitors have been identified. PW1/Peg3 is expressed in satellite cells as well as a subset of interstitial cells with myogenic potential termed PICs (PW1+ Interstitial Cells). PICs differ from satellite cells by their anatomical location (satellite cells are sublaminal and PICs are interstitial), they do not express any myogenic marker and arise from a Pax3-independent lineage. Upon isolation from juvenile muscle (1 to 3 weeks old), PICs are capable to form both skeletal and smooth muscle suggesting they constitute a more plastic population compared to satellite cells. We used microarrays to gain insight into the relantionship between PICs and satellite cells. PICs and satellite cells were isolated from 1-week old mouse muscle and subsequent RNA extraction was performed.
Project description:Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic expression of the myogenic transcription factor MyoD, combined with exposure to small molecules, reprograms mouse fibroblasts into expandable induced myogenic progenitor cells (iMPCs). iMPCs express key skeletal muscle stem and progenitor cell markers including Pax7 and Myf5 and give rise to Dystrophin-expressing myofibers upon transplantation, a subset of which maintain Pax7 expression in vivo and sustain serial regenerative responses. Similar to satellite cells, iMPCs originate from Pax7+ cells and require Pax7 itself for maintenance. Finally, we show that iMPCs can be established from muscle tissue following small molecule exposure alone. This study thus reports on a robust approach to derive expandable myogenic stem/progenitor-like cells from multiple differentiated cell types.
Project description:Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic expression of the myogenic transcription factor MyoD, combined with exposure to small molecules, reprograms mouse fibroblasts into expandable induced myogenic progenitor cells (iMPCs). iMPCs express key skeletal muscle stem and progenitor cell markers including Pax7 and Myf5 and give rise to Dystrophin-expressing myofibers upon transplantation, a subset of which maintain Pax7 expression in vivo and sustain serial regenerative responses. Similar to satellite cells, iMPCs originate from Pax7+ cells and require Pax7 itself for maintenance. Finally, we show that iMPCs can be established from muscle tissue following small molecule exposure alone. This study thus reports on a robust approach to derive expandable myogenic stem/progenitor-like cells from multiple differentiated cell types.
Project description:Satellite cells (SC) are muscle stem cells which can regenerate adult muscles upon injury. Most SC originate from PAX7+ myogenic precursors set aside during development. Although myogenesis has been studied in mouse and chicken embryos, little is known about human muscle development. Here, we report the generation of human induced pluripotent stem cell (iPSC) reporter lines in which fluorescent proteins have been introduced into the PAX7 and MYOG loci. We use single cell RNA sequencing to analyze the developmental trajectory of the iPSC-derived PAX7+ myogenic precursors. We show that the PAX7+ cells generated in culture can produce myofibers and self-renew in vitro and in vivo. Together, we demonstrate that cells exhibiting characteristics of human fetal satellite cells can be produced in vitro from iPSC, opening interesting avenues for muscular dystrophy cell therapy. This work provides significant insights into the development of the human myogenic lineage.
Project description:Traumatic injury often results in muscle loss and impairment, which is worsened under aged and diseased conditions. Activation of resident stem cells or transplantation of myogenic stem cells can promote muscle regeneration. However, major challenges remain in harvesting sufficient autologous myogenic stem cells and expanding such cells efficiently for muscle regeneration therapies. Here, we identified a chemical cocktail that selectively induced a robust expansion of myogenic stem cells from readily-obtainable dermal cells and from muscle stromal cells. By differential plating and lineage tracing, we showed that Pax7+ cells were the major source for chemical-induced myogenic stem cells (CiMCs). We further performed single-cell RNA sequencing (scRNA-seq) analysis to characterize the transcriptomic profile of CiMCs and demonstrate a specific expansion of myogenic cells from heterogeneous dermal cell population. Upon transplantation into the injured muscle, CiMCs were efficiently engrafted and improved functional muscle regeneration in both adult and aged mice. In addition, CiMC transplantation rescued muscle function in mice with Duchenne muscular dystrophy (DMD). Furthermore, an in situ therapeutic modality using this cocktail was developed by loading the chemical cocktail into injectable nanoparticles, which enabled a sustained release of the cocktail in injured muscle and a local expansion of resident satellite cells for muscle regeneration in adult and aged mice. These findings will lead to the development of novel in vitro and in situ stem cell therapies for effective skeletal muscle repair.
Project description:Traumatic injury often results in muscle loss and impairment, which is worsened under aged and diseased conditions. Activation of resident stem cells or transplantation of myogenic stem cells can promote muscle regeneration. However, major challenges remain in harvesting sufficient autologous myogenic stem cells and expanding such cells efficiently for muscle regeneration therapies. Here, we identified a chemical cocktail that selectively induced a robust expansion of myogenic stem cells from readily-obtainable dermal cells and from muscle stromal cells. By differential plating and lineage tracing, we showed that Pax7+ cells were the major source for chemical-induced myogenic stem cells (CiMCs). We further performed single-cell RNA sequencing (scRNA-seq) analysis to characterize the transcriptomic profile of CiMCs and demonstrate a specific expansion of myogenic cells from heterogeneous dermal cell population. Upon transplantation into the injured muscle, CiMCs were efficiently engrafted and improved functional muscle regeneration in both adult and aged mice. In addition, CiMC transplantation rescued muscle function in mice with Duchenne muscular dystrophy (DMD). Furthermore, an in situ therapeutic modality using this cocktail was developed by loading the chemical cocktail into injectable nanoparticles, which enabled a sustained release of the cocktail in injured muscle and a local expansion of resident satellite cells for muscle regeneration in adult and aged mice. These findings will lead to the development of novel in vitro and in situ stem cell therapies for effective skeletal muscle repair.
Project description:Adult myogenic progenitor cells (activated satellite cells) express both HGF and its receptor cMet. Following muscle injury, autocrine HGF-Met stimulation plays a key role in promoting activation and early division of satellite cells. Magic-F1 (Met-Activating Genetically Improved Chimeric Factor-1) is an HGF-derived, engineered protein that contains two Met-binding domains that promotes muscle hypertrophy, protecting myogenic precursors against apoptosis, increasing their fusion ability and enhancing muscle differentiation. Hemizygous and homozygous Magic-F1 transgenic mice displayed constitutive muscle hypertrophy. We described here microarray analysis on Magic-F1 myogenic progenitor cells showing an altered gene signatures involving muscle hypertrophy and vasculogenesis compared to wild-type cells. In parallel, we performed a functional analysis on homozygous Magic-F1 transgenic mice versus control, demonstrating that Magic-F1+/+ mice display impairment on running performance. Finally, we show that induced muscle hypertrophy affects positively vascular network, increasing vessel number in fast twitch fibers. This is due to unique features of mammalian skeletal muscle and its remarkable ability to adapt promptly to different physiological demands by changing gene expression profile. Biological triplicates of Magic-F1+/+ and control satellite cells were used for microarray analysis.
Project description:Skeletal muscle growth and regeneration rely on myogenic progenitor and satellite cells, the stem cells of postnatal muscle. Elimination of Notch signals during mouse development results in premature differentiation of myogenic progenitors and formation of very small muscle groups. Here we show that this drastic effect is rescued by mutation of the muscle differentiation factor MyoD. However, rescued myogenic progenitors do not assume a satellite cell position and contribute poorly to myofiber growth. The disrupted homing is due to a deficit in basal lamina assembly around emerging satellite cells and to their impaired adhesion to myofibers. On a molecular level, emerging satellite deregulate the expression of basal lamina components and adhesion molecules like integrin a7, collagen XVIIIa1, Megf10 and Mcam. We conclude that Notch signals control homing of satellite cells, stimulating them to contribute to their own microenvironment and to adhere to myofibers. Gene expression analysis using total RNA from FACS-isolated Vcam-1+/CD31-/CD45-/Sca1- embryonic muscle progenitor cells from E17.5 back muscle tissue of MyoD-/-, Pax3cre/+;Rbpjflox/flox;MyoD-/- and Pax3cre/+;DnMamlflox/flox;MyoD-/- mice.