Project description:Transcriptomic profile of the homeodomain protein CEH-23 under mitochondrial ETC stress in C. elegans by comparing gene expression profile between isp-1(qm150) vs. ceh-23(ms23);isp-1(qm150) mutants
Project description:Animals integrate metabolic, developmental, and environmental information before committing key resources to reproduction. In C. elegans, adult animals reallocate key fat stores from intestinal cells to the germline via lipoproteins to promote reproduction. I identified the evolutionarily conserved homeodomain transcription factor CEH-60/PBX as a potent regulator of lipid homeostasis, longevity, and stress response pathways. To gain a comprehensive view of CEH-60 transcriptional activity, I profiled the transcriptomes of ceh-60 mutants by mRNA-Seq and identified genome-wide CEH-60 binding sites by ChIP-Seq. These approaches revealed that several homeostatic pathways are directly controlled by the CEH-60 transcription factor. CEH-60 functions cooperatively with UNC-62/MEIS in the intestine to directly activate lipoprotein genes while simultaneously repressing genes involved in stress responses, including the innate immune and oxidative stress responses. Thus in wild-type animals, CEH-60 serves as a molecular switch that promotes reproduction (i.e., lipoproteins) while repressing stress response and longevity pathways. This study identifies a new key regulator of fat metabolism, longevity, and stress response pathways during normal C. elegans development.
Project description:Animals integrate metabolic, developmental, and environmental information before committing key resources to reproduction. In C. elegans, adult animals reallocate key fat stores from intestinal cells to the germline via lipoproteins to promote reproduction. I identified the evolutionarily conserved homeodomain transcription factor CEH-60/PBX as a potent regulator of lipid homeostasis, longevity, and stress response pathways. To gain a comprehensive view of CEH-60 transcriptional activity, I profiled the transcriptomes of ceh-60 mutants by mRNA-Seq and identified genome-wide CEH-60 binding sites by ChIP-Seq. These approaches revealed that several homeostatic pathways are directly controlled by the CEH-60 transcription factor. CEH-60 functions cooperatively with UNC-62/MEIS in the intestine to directly activate lipoprotein genes while simultaneously repressing genes involved in stress responses, including the innate immune and oxidative stress responses. Thus in wild-type animals, CEH-60 serves as a molecular switch that promotes reproduction (i.e., lipoproteins) while repressing stress response and longevity pathways. This study identifies a new key regulator of fat metabolism, longevity, and stress response pathways during normal C. elegans development.
Project description:The onset of sexual maturity involves dramatic changes in physiology and gene expression in many animals. A textbook example is the production of enormous amounts of yolk proteins destined for the nascent oocytes, termed vitellogenesis. We previously identified the rapidly evolving PBC-class Hox-cofactor CEH-60/PBX as necessary for abundant vit transcription in C. elegans. Differential proteomics data shows that all vitellogenin proteins are indeed drastically downregulated in ceh-60 mutant animals and suggest an additional role for CEH-60’s involvement cuticle structure, innate immunity and stress response.
Project description:Mitochondrial functions across different tissues are regulated in a coordinated fashion to optimize fitness of the organism. Mitochondrial unfolded protein response (UPRmt) can be non-autonomously elicited by mitochondrial perturbation in neurons, but neuronal signals that propagate such response and its physiological significance remains incompletely understood. Here we show that in C. elegans, loss of neuronal fzo-1/Mitofusin induces non-autonomous UPRmt through multiple neurotransmitters and neurohormones, including acetylcholine, serotonin, glutamate, tyramine and insulin-like peptides. Neuronal fzo-1 depletion also triggers non-autonomous mitochondrial fragmentation, which requires autophagy and mitophagy genes. Systemic activation of UPRmt and mitochondrial fragmentation in C. elegans via perturbing neuronal mitochondrial dynamics improves resistance to pathogenic Pseudomonas infection, which is supported by transcriptomic signatures of immunity and stress response genes. We propose that C. elegans surveils neuronal mitochondrial dynamics that coordinate systemic UPRmt and mitochondrial connectivity for pathogen defense and optimized survival under bacterial infection.