Project description:C-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)–κB signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. Mammalian target of rapamycin complex 1 (mTORC1) is a protein kinase that is activated in various tumor cell types. We have now identified a noncanonical pathway for regulation of CCL2 production that is mediated by mTORC1 but independent of NF-κB. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1, with dephosphorylation of FOXK1 in response to mTORC1 activation resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-κB, and that CCL2 produced by this pathway contributes to tumor progression. Specific inhibition of FOXK1 may thus be a potential therapeutic strategy for cancer.
Project description:C-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)–κB signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1) but independent of NF-κB. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1 resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-κB, and that CCL2 produced by this pathway contributes to tumor progression. This SuperSeries is composed of the SubSeries listed below.
Project description:C-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)–κB signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1) but independent of NF-κB. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1 resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-κB, and that CCL2 produced by this pathway contributes to tumor progression.
Project description:C-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)–κB signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1) but independent of NF-κB. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1 resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-κB, and that CCL2 produced by this pathway contributes to tumor progression.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:The goal of this study was to apply next-generation sequencing (NGS) analyses to identify genes and pathways regulated by the Foxk1 transcription factor in the liver and to see the effects of liver-specific Foxk1 deficiency in the diet-induced non-alcoholic steatohepatitis (NASH) model. Transcriptome and ChIP-seq analysis revealed that liver Foxk1 promotes the pathogenesis of NASH by regulating the expression of a series of molecules involved in hepatic lipid metabolism in an mTORC1-dependent manner.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6