Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:The newest WHO classification suggests eliminating cases with BRAF and NRAS mutations from the categories of Spitz tumors (ST) and Spitz melanoma (SM). We aimed to better characterize the genomics of Spitz neoplasms and assess whether integrating genomic data with morphologic diagnosis improves classification and prognostication. We performed DNA and RNA sequencing on 80 STs, 26 SMs, and 22 melanomas with Spitzoid features (MSF). NGS data was used to reclassify tumors by moving BRAF/NRAS-mutated cases to MSF. Eighty-one percent of STs harbored kinase fusions/truncations. Of SMs, 77% had fusions/truncations, 8 involving MAP3K8. Novel fusions identified were MYO5A-FGFR1, MYO5A-ERBB4, and PRKDC-CTNNB1. The majority of MSFs (84%) had BRAF, NRAS, or NF1 mutations, and 62% had TERT promoter mutations. Only after reclassification, the following was observed: 1) mRNA expression showed distinct clustering of MSF; 2) 6/7 cases with recurrence and all distant metastases were MSFs; 3) RFS was worse in MSF than ST and SM groups (p=0.0073); 4) classification incorporating genomic data was highly predictive of recurrence (OR 13.20, p=0.0197). The majority of STs and SMs have kinase fusions as primary initiating genomic events. Eliminating BRAF/NRAS-mutated neoplasms from these categories results in improved classification and prognostication of melanocytic neoplasms with Spitzoid cytomorphology.
Project description:Distinguishing between Spitz nevus and melanoma presents a challenging task for clinicians and pathologists. Most of these lesions are submitted entirely in formalin for histologic analysis by conventional hematoxylin and eosin-stained sections, and fresh-frozen material for ancillary studies is rarely collected. Molecular techniques, such as comparative genomic hybridization (CGH), can detect chromosomal alterations in tumor DNA that differ between these 2 lesions. This study investigated the ability of high-resolution array-based CGH to serve as a diagnostic test in distinguishing Spitz nevus and melanoma using DNA isolated from formalin-fixed and paraffin-embedded samples. Two of 3 Spitz nevi exhibited no significant chromosomal alterations, while the third showed gain of the short arm of chromosome 11p. The latter finding has previously been described as characteristic of a subset of Spitz nevi. The 2 melanomas showed multiple copy number alterations characteristic of melanoma such as 1q amplification and chromosome 9 deletion. This study has shown the utility of array-based CGH as a potential molecular test in distinguishing Spitz nevus from melanoma. The assay is capable of using archival paraffin-embedded, formalin-fixed material; is technically easier to perform as compared with conventional CGH; is more sensitive than conventional CGH in being able to detect focal alterations; and can detect copy number alterations even with relatively small amounts of lesional tissue as is typical of many skin tumors. Series_type = clinical_history_design A clinical history design type is where the organisms clinical history of diagnosis, treatments, e.g. vaccinations, surgery etc. Keywords: other