Project description:The paper describes a model of glioblastoma.
Created by COPASI 4.25 (Build 207)
This model is described in the article:
Modeling the Treatment of Glioblastoma Multiforme and Cancer Stem Cells with Ordinary Differential Equations
Kristen Abernathy and Jeremy Burke BMC
Computational and Mathematical Methods in Medicine Volume 2016, Article ID 1239861, 11 pages
Abstract:
Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models .
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:Here we performed a ChIP-seq experiment for Zeb1 trancription factor on a sample of adherent cultures of human neural stem cells (Cb192 cell line) and of a human glioblastoma cancer stem-like cell line (NCH421k). The result is the generation of the genome-wide maps for Zeb1 binding to chromatin in human neural stem cells and glioblastoma stem-like cells.
Project description:Dendritic cell (DC)-based immunotherapy against glioblastoma multiforme is a novel treatment hope. Glioblastoma stem-like cells are, however, potentially causing immunoresistance. Glioblastoma cells cultured as gliomaspheres show a stem-like phenotype as opposed to classical adherent culture. They are thus a promising antigen source to specifically target glioblastoma stem-like cells via DC therapy and so overcome immunoresistance. Here we study the importance of gliomasphere-specific. Methodologically, we used 7 gliomaspheres, 3 of them patient-derived, as model system. Gliomasphere-specific protein expression was explored via quantitative proteomics.
Project description:We had performed the ATAC-seq in mouse and human glioblastoma stem cells to understand the epigenetic regulation of glioblastoma stem cells.
Project description:Glioblastoma is one of the most malignant brain tumors with poor prognosis and their development and progression are known to be driven by glioblastoma stem cells. Although glioblastoma stem cells lose their cancer stemness properties during cultivation in serum-containing medium, little is known about the molecular mechanisms regulating signaling alteration in relation to reduction of stemness. In order to elucidate the global phosphorylation-related signaling events, we performed a SILAC-based quantitative phosphoproteome analysis of serum-induced dynamics in glioblastoma stem cells established from the tumor tissues of the patient. Among a total of 2,876 phosphorylation sites on 1,584 proteins identified in our analysis, 732 phosphorylation sites on 419 proteins were regulated through the alteration of stem cell characteristics.