Project description:Banned from mass production, polychlorinated biphenyls (PCBs) still pose a neurological health threat decades later. PCB52, a volatile compound, has been found in the indoor air of schools where adolescent students and staff are exposed. The adolescent brain is vulnerable and highly influenced by the environment around it. This study used adolescent Sprague-Dawley rats to determine the neurological effects of a subacute (28-day) PCB52 inhalation exposure. Rats were exposed 4 h a day for 28 consecutive days with neurobehavioral tests conducted during the last 5 days of exposure. Based on the data including brain weights, PCB52 and metabolite levels, gene expression in the striatum and cerebellum, and neurobehavioral tests (Y-maze, HBT, OFT, and EPM); a subacute inhalation of PCB52 results in sex-specific differences in response to exposure. Our results indicate multilevel PCB52 influence that is different in adolescent males and females; from gene expression to downstream innate mechanisms driving behavior.
Project description:Human health effects from chronic exposure to pesticide residues are little investigated. We compared standard histopathology and serum biochemistry measures and multi-omics analyses in an in vivo subchronic toxicity test of a glyphosate, its formulated product MON 52276, and mixture of six pesticide active ingredients frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole). Sprague-Dawley rats were administered with the pesticide mixture with each ingredient at its regulatory permitted acceptable daily intake.
Project description:Human health effects from chronic exposure to pesticide residues are little investigated. We compared standard histopathology and serum biochemistry measures and multi-omics analyses in an in vivo subchronic toxicity test of a glyphosate, its formulated product MON 52276, and mixture of six pesticide active ingredients frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole). Sprague-Dawley rats were administered with the pesticide mixture with each ingredient at its regulatory permitted acceptable daily intake.
Project description:In this study we performed microarray-based molecular profiling of liver samples from Wistar rats exposed to genotoxic carcinogens (GC), nongenotoxic carcinogens (NGC) or non-hepatocarcinogens (NC) for up to 14 days. In contrast to previous toxicogenomics studies aimed at the inference of molecular signatures for assessing the potential and mode of compound carcinogenicity, we considered multi-level omics data. Besides evaluating the predictive power of signatures observed on individual biological levels, such as mRNA, miRNA and protein expression, we also introduced novel feature representations which capture putative molecular interactions or pathway alterations by integrating expression profiles across platforms interrogating different biological levels. Male Wistar rats were treated by oral gavage with the eight nongenotoxic hepatocarcinogens Phenobarbital sodium (PB), Piperonylbutoxide (PBO), Dehydroepiandrosterone (DHEA), Acetamide (AA), Methapyrilene HCl (MPy), Methylcarbamate (Mcarb), Diethylstilbestrol (DES) and Ethionine (ETH), the two genotoxic carcinogens C.I Direct Black (CIDB) and dimethylnitrosamine (DMN), the two non-hepatocarcinogens Cefuroxime (CFX) and Nifedipine (Nif), and the three compounds with undefined carcinogenic class Cyproterone acetate (CPA), Thioacetamid (TAA) and Wy-14643 (Wy). Depending on the administered compound, livers were taken after 3, 7, or 14 days for histopathological evaluation. From the five animals per treatment group three animals were selected based on the histopathological findings and subjected to molecular profiling using Affymetrix RG-230A arrays (mRNA expression), Agilent G4473A arrays (miRNA expression) and Zeptosens ZeptoMARK reverse arrays (protein expression).
Project description:In this study we performed microarray-based molecular profiling of liver samples from Wistar rats exposed to genotoxic carcinogens (GC), nongenotoxic carcinogens (NGC) or non-hepatocarcinogens (NC) for up to 14 days. In contrast to previous toxicogenomics studies aimed at the inference of molecular signatures for assessing the potential and mode of compound carcinogenicity, we considered multi-level omics data. Besides evaluating the predictive power of signatures observed on individual biological levels, such as mRNA, miRNA and protein expression, we also introduced novel feature representations which capture putative molecular interactions or pathway alterations by integrating expression profiles across platforms interrogating different biological levels. Male Wistar rats were treated by oral gavage with the eight nongenotoxic hepatocarcinogens Phenobarbital sodium (PB), Piperonylbutoxide (PBO), Dehydroepiandrosterone (DHEA), Acetamide (AA), Methapyrilene HCl (MPy), Methylcarbamate (Mcarb), Diethylstilbestrol (DES) and Ethionine (ETH), the two genotoxic carcinogens C.I Direct Black (CIDB) and dimethylnitrosamine (DMN), the two non-hepatocarcinogens Cefuroxime (CFX) and Nifedipine (Nif), and the three compounds with undefined carcinogenic class Cyproterone acetate (CPA), Thioacetamid (TAA) and Wy-14643 (Wy). Depending on the administered compound, livers were taken after 3, 7, or 14 days for histopathological evaluation. From the five animals per treatment group three animals were selected based on the histopathological findings and subjected to molecular profiling using Affymetrix RG-230A arrays (mRNA expression), Agilent G4473A arrays (miRNA expression) and Zeptosens ZeptoMARK reverse arrays (protein expression).
Project description:In this study we performed microarray-based molecular profiling of liver samples from Wistar rats exposed to genotoxic carcinogens (GC), nongenotoxic carcinogens (NGC) or non-hepatocarcinogens (NC) for up to 14 days. In contrast to previous toxicogenomics studies aimed at the inference of molecular signatures for assessing the potential and mode of compound carcinogenicity, we considered multi-level omics data. Besides evaluating the predictive power of signatures observed on individual biological levels, such as mRNA, miRNA and protein expression, we also introduced novel feature representations which capture putative molecular interactions or pathway alterations by integrating expression profiles across platforms interrogating different biological levels. Male Wistar rats were treated by oral gavage with the eight nongenotoxic hepatocarcinogens Phenobarbital sodium (PB), Piperonylbutoxide (PBO), Dehydroepiandrosterone (DHEA), Acetamide (AA), Methapyrilene HCl (MPy), Methylcarbamate (Mcarb), Diethylstilbestrol (DES) and Ethionine (ETH), the two genotoxic carcinogens C.I Direct Black (CIDB) and dimethylnitrosamine (DMN), the two non-hepatocarcinogens Cefuroxime (CFX) and Nifedipine (Nif), and the three compounds with undefined carcinogenic class Cyproterone acetate (CPA), Thioacetamid (TAA) and Wy-14643 (Wy). Depending on the administered compound, livers were taken after 3, 7, or 14 days for histopathological evaluation. From the five animals per treatment group three animals were selected based on the histopathological findings and subjected to molecular profiling using Affymetrix RG-230A arrays (mRNA expression), Agilent G4473A arrays (miRNA expression) and Zeptosens ZeptoMARK reverse arrays (protein expression).
Project description:In the present study, both untargeted and targeted metabolomics approaches were used to evaluate the subacute effects of hexabromocyclododecane (HBCD) on mice urine metabolome. Untargeted metabolomics based on 1H NMR showed that HBCD exposure disturbed mice metabolism in both dosed groups, especially in high dosed group. The low-dose HBCD led to a decrease in alanine, malonic acid, and trimethylamine (TMA). High-dose HBCD-treated mice developed high levels of citric acid and 2-ketoglutarate, together with decreased alanine, acetate, formate, TMA, 3-hydroxybutyrate, and malonic acid. Targeted metabolomics for metabolic profiling of 20 amino acids identified alanine, lysine, and phenylalanine as significantly disturbed metabolites. These results indicated that subchronic exposure to HBCD caused a disturbance of mice metabolism, especially in TCA cycle, lipid metabolism, gut microbial metabolism, and homeostasis of amino acids, and the application of untargeted and targeted metabolomics combined with conventional toxicology approaches to evaluate the subacute effects of pollutants will provide more comprehensive information and aid in predicting health risk of these pollutants.
2015-02-14 | MTBLS166 | MetaboLights
Project description:Gut Microbiota by Silica Exposure in Wistar Rats