Project description:Replication stress activates the Mec1ATR and Rad53 kinases. Rad53 phosphorylates nuclear pores to counteract gene gating, thus preventing aberrant transitions at forks approaching transcribed genes. Here, we show that Rrm3 and Pif1, DNA helicases assisting fork progression across pausing sites, are detrimental in rad53 mutants experiencing replication stress. Rrm3 and Pif1 ablations rescue cell lethality, chromosome fragmentation, replisome-fork dissociation, fork reversal, and processing in rad53 cells. Through phosphorylation, Rad53 regulates Rrm3 and Pif1; phospho-mimicking rrm3 mutants ameliorate rad53 phenotypes following replication stress without affecting replication across pausing elements under normal conditions. Hence, the Mec1-Rad53 axis protects fork stability by regulating nuclear pores and DNA helicases. We propose that following replication stress, forks stall in an asymmetric conformation by inhibiting Rrm3 and Pif1, thus impeding lagging strand extension and preventing fork reversal; conversely, under unperturbed conditions, the peculiar conformation of forks encountering pausing sites would depend on active Rrm3 and Pif1.
Project description:Replication stress activates the Mec1ATR and Rad53 kinases. Rad53 phosphorylates nuclear pores to counteract gene gating, thus preventing aberrant transitions at forks approaching transcribed genes. Here, we show that Rrm3 and Pif1, DNA helicases assisting fork progression across pausing sites, are detrimental in rad53 mutants experiencing replication stress. Rrm3 and Pif1 ablations rescue cell lethality, chromosome fragmentation, replisome-fork dissociation, fork reversal, and processing in rad53 cells. Through phosphorylation, Rad53 regulates Rrm3 and Pif1; phospho-mimicking rrm3 mutants ameliorate rad53 phenotypes following replication stress without affecting replication across pausing elements under normal conditions. Hence, the Mec1-Rad53 axis protects fork stability by regulating nuclear pores and DNA helicases. We propose that following replication stress, forks stall in an asymmetric conformation by inhibiting Rrm3 and Pif1, thus impeding lagging strand extension and preventing fork reversal; conversely, under unperturbed conditions, the peculiar conformation of forks encountering pausing sites would depend on active Rrm3 and Pif1. BrdU incorporation profiles by ssDNA-BrdU IP on chip have been generated as described (Katou et al., 2003). Protein binding profiles by ChIP-chip analysis were generated as described (Bermejo et al., 2009). Labeled probes were hybridized to Affymetrix S.cerevisiae Tiling 1.0 (P/N 900645) arrays and processed with TAS software.
Project description:Saccharomyces cerevisiae encodes two distinct Pif1-family helicases – Pif1 and Rrm3 – which have been reported to play distinct roles in numerous nuclear processes. Here, we systematically characterize the roles of Pif1 helicases in replisome progression and lagging- strand synthesis in S. cerevisiae. We demonstrate that either Pif1 or Rrm3 redundantly stimulate strand-displacement by DNA polymerase δ during lagging-strand synthesis. By analyzing replisome mobility in pif1 and rrm3 mutants, we show that Rrm3, with a partially redundant contribution from Pif1, suppresses widespread terminal arrest of the replisome at tRNA genes. Although both head-on and codirectional collisions induce replication fork arrest at tRNA genes, head-on collisions arrest a higher proportion of replisomes; consistent with this observation, we find that head-on collisions between tRNA transcription and replisome progression are under-represented in the S. cerevisiae genome. Further, we demonstrate that tRNA-mediated arrest is R-loop independent, and propose that replisome arrest and DNA damage are mechanistically separable.
Project description:[original title] Chromosome replication initiates at multiple replicons and terminates when forks converge. In Escherichia coli, the Tus-TER complex mediates polar fork converging at the terminator region and aberrant termination events challenge chromosome integrity and segregation. Since in eukaryotes termination is less characterized, we used budding yeast to identify the factors assisting fork fusion at replicating chromosomes. Using genomic and mechanistic studies we have identified and characterized 71 chromosomal termination regions (TERs). TERs contain fork pausing elements that influence fork progression and merging. The Rrm3 DNA helicase assists fork progression across TERs counteracting the accumulation of X-shaped structures. The Top2 DNA topoisomerase associates at TERs in S-phase and G2/M facilitates fork fusion and prevents DNA breaks and genome rearrangements at TERs. We propose that in eukaryotes replication fork barriers, Rrm3 and Top2 coordinate replication fork progression and fusion at termination regions thus counteracting abnormal genomic transitions. Signal tracks in BED format suitable for visualization on the UCSC genome browser can be found at http://bio.ifom-ieo-campus.it/supplementary/Fachinetti_et_al_MOLCELL_2010
Project description:Replication forks terminate at TERs and telomeres. Forks that converge or encounter transcription generate topological stress. Combining genetic, genomic and imaging approaches we found that Rrm3hPif1 and Sen1hSenataxin helicases assist termination at TERs, Sen1 at telomeres. rrm3 and sen1 are synthetic lethal, fail to terminate replication exhibiting lagging chromosomes and fragility at TERs and telomeres. sen1 rrm3 build up RNA-DNA hybrids at TERs, sen1 accumulates RNPII at TERs and telomeres. Double mutants exhibit X-shaped gapped or reversed converging forks. Rrm3 and Sen1 restrain Top1 and Top2 activities, preventing toxic accumulation of positive supercoil at TERs and telomeres. We suggest that Rrm3 and Sen1 coordinate the activities of fork-associated Top1 and Top2 with those of gene loop-associated Top1 and Top2 by preventing DNA and RNA polymerases slowing down when forks encounter transcription head-on or codirectionally, respectively. Hence Rrm3 and Sen1 are essential to generate permissive topological conditions for replication termination.
Project description:Replication forks terminate at TERs and telomeres. Forks that converge or encounter transcription generate topological stress. Combining genetic, genomic and imaging approaches we found that Rrm3hPif1 and Sen1hSenataxin helicases assist termination at TERs, Sen1 at telomeres. rrm3 and sen1 are synthetic lethal, fail to terminate replication exhibiting lagging chromosomes and fragility at TERs and telomeres. sen1 rrm3 build up RNA-DNA hybrids at TERs, sen1 accumulates RNPII at TERs and telomeres. Double mutants exhibit X-shaped gapped or reversed converging forks. Rrm3 and Sen1 restrain Top1 and Top2 activities, preventing toxic accumulation of positive supercoil at TERs and telomeres. We suggest that Rrm3 and Sen1 coordinate the activities of fork-associated Top1 and Top2 with those of gene loop-associated Top1 and Top2 by preventing DNA and RNA polymerases slowing down when forks encounter transcription head-on or codirectionally, respectively. Hence Rrm3 and Sen1 are essential to generate permissive topological conditions for replication termination.
Project description:Replication forks temporarily or terminally pause at hundreds of hard-to-replicate regions around the genome. A conserved pair of budding yeast replisome components Tof1-Csm3 (fission yeast Swi1-Swi3 and human TIMELESS-TIPIN) acts as a ‘molecular brake’ and promotes fork slowdown at proteinaceous replication fork barriers (RFBs), while the accessory helicase Rrm3 assists the replisome in removing protein obstacles. Here we show that Tof1-Csm3 complex promotes fork pausing independently of Rrm3 helicase by recruiting topoisomerase I (Top1) to the replisome. Topoisomerase II (Top2) partially compensates for the pausing decrease in cells when Top1 is lost from the replisome. The C-terminus of Tof1 is specifically required for Top1 recruitment to the replisome and fork pausing but not for DNA replication checkpoint (DRC) activation. We propose that forks pause at proteinaceous RFBs through a ‘sTOP’ mechanism (‘slowing down with TOPoisomerases I-II’), which we show also contributes to protecting cells from topoisomerase-blocking agents.
Project description:The influence of mono-ubiquitylation of histone H2B (H2Bub) on transcription via nucleosome reassembly has been widely documented. Recently, it has also been shown that H2Bub promotes recovery from replication stress; however, the underling molecular mechanism remains unclear. Here, we show that H2B ubiquitylation coordinates activation of the intra-S replication checkpoint and chromatin re-assembly, in order to limit fork progression and DNA damage in the presence of replication stress. In particular, we show that the absence of H2Bub affects replication dynamics (enhanced fork progression and reduced origin firing), leading to γH2A accumulation and increased hydroxyurea sensitivity. Further genetic analysis indicates a role for H2Bub in transducing Rad53 phosphorylation. Concomitantly, we found that a change in replication dynamics is not due to a change in dNTP level, but is mediated by reduced Rad53 activation and destabilization of the RecQ helicase Sgs1 at the fork. Furthermore, we demonstrate that H2Bub facilitates the dissociation of the histone chaperone Asf1 from Rad53, and nucleosome reassembly behind the fork is compromised in cells lacking H2Bub. Taken together, these results indicate that the regulation of H2B ubiquitylation is a key event in the maintenance of genome stability, through coordination of intra-S checkpoint activation, chromatin assembly and replication fork progression. S.cerevisiae oligonucleotide microarrays were provided by Affymetrix (S.cerevisiae Tiling 1.0R, P/N 900645). BrdU and proteins ChIP-chip analyses were carried out as described (Fachinetti et al., M Cell, 2010).
Project description:DNA topoisomerases solve topological problems during chromosome metabolism. We investigated where and when Top1 and Top2 are recruited on replicating chromosomes and how their inactivation affects fork integrity and DNA damage checkpoint activation. We show that, in the context of replicating chromatin, Top1 and Top2 act within a 600 bp region spanning the moving forks. Top2 exhibits additional S-phase clusters at specific intergenic loci, mostly containing promoters. TOP1 ablation does not affect fork progression and stability and does not cause activation of the Rad53 checkpoint kinase. top2 mutants accumulate sister chromatid junctions in S phase without affecting fork progression and activate Rad53 at the M/G1 transition. top1 top2 double mutants exhibit fork block and processing, and phosphorylation of Rad53 and γH2A in S phase. The exonuclease Exo1 influences fork processing and DNA damage checkpoint activation in top1 top2 mutants. Our data are consistent with a coordinated action of Top1 and Top2 in counteracting the accumulation of torsional stress and sister chromatid entanglement at replication forks, thus preventing the diffusion of topological changes along large chromosomal regions. A failure in resolving fork-related topological constrains during S phase may therefore result in abnormal chromosome transitions, DNA damage checkpoint activation and chromosome breakage during segregation. Keywords: ChIP-chip analysis